Answer of question \#79950 -Physics- Mechanics - Relativity

A light-rail train going from one station to the next on a straight section of track accelerates from rest at $1.1 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ for 20 s . It then proceeds at constant speed for 1100 m before slowing down at $2.2 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ until it stops at the station. What is the distance between the stations? How much time does it take the train to go between the stations?

Input Data:

Acceleration:
$a_{1}=1.1 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
Acceleration time: $t_{1}=20 \mathrm{~s}$
Distance at constant speed: $S_{2}=1100 \mathrm{~m}$

Slow down to a stop: $a_{2}=2.2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

Solution:

Constant speed, dialed by train:
$V_{1}=a_{1} t_{1}=1.1 * 20=22 \frac{\mathrm{~m}}{\mathrm{~s}}$
The distance traveled during acceleration:
$S_{1}=\frac{a_{1} t_{1}^{2}}{2}=1.1 * \frac{400}{2}=220 \mathrm{~m}$

Travel time at a constant speed:
$t_{2}=\frac{S_{2}}{V_{1}}=\frac{1100}{22}=50 \mathrm{~s}$
Braking distance:
$S_{3}=\frac{a_{2} t_{3}^{2}}{2}=\frac{2.2 * 10^{2}}{2}=110 \mathrm{~m}$
Distance from station to station:
$S=S_{1}+S_{2}+S_{3}=220+1100+110=1430 \mathrm{~m}$
Total travel time from station to station:
$t=t_{1}+t_{2}+t_{3}=20+50+10=80 s$
Answer:

- $S=1430 m$
- $\mathrm{t}=80 \mathrm{~s}=1 \mathrm{~m} 20 \mathrm{~s}$

