A rod 1.22 meter long rotates in a horizontal plane about a vertical axis through its center. At each end of the rod is fastened a cord 0.91 meters long. Each chord supports a weight W . Compute the speed of rotation in rev/min when the weight is inclined 30 degrees with the vertical.

As could be seen from the Fig.1, $r=1.22 / 2+0.91^{*} \sin 30^{\circ}=0.61+0.455=1.065 \mathrm{~m}$.
As could be seen from the Fig.2, $a=g^{*} \tan 30^{\circ}=9.81^{*} \sqrt{ }(1 / 3)=5.66 \mathrm{~m} / \mathrm{s}^{2}$.
From $\mathrm{a}=\mathrm{u}^{2} / \mathrm{r}, \mathrm{u}=\sqrt{ }\left(\mathrm{a}^{*} \mathrm{r}\right)=2.45 \mathrm{~m} / \mathrm{s}->147.4 \mathrm{~m} / \mathrm{min}$.
So, rotation is $n=u /\left(2^{*} \pi^{*} r\right)=22 \mathrm{rev} / \mathrm{min}$.
Answer provided by https://www.AssignmentExpert.com

