

Answer on Question #79808, Physics / Molecular Physics | Thermodynamics

A coal sample consists of 82.1 % carbon, 4.5 % hydrogen, 1.5 % sulphur, 3.0% oxygen and the remainder incombustible material. If 1 kg is burnt with 20 % excess air, determine (i) the mass of air required per kilogram of fuel and (ii) prepare an analysis by mass of the products of combustion per kilogram of fuel.

Solution

Find masses of carbon, hydrogen, sulphur and oxygen in 1 kg of a coal.

$$m(C) = 0.821 \times 1000 \text{ g} = 821 \text{ g}$$

$$m(H) = 0.045 \times 1000 \text{ g} = 45 \text{ g}$$

$$m(S) = 0.015 \times 1000 \text{ g} = 15 \text{ g}$$

$$m(O) = 0.030 \times 1000 \text{ g} = 30 \text{ g}$$

The reactions that take place in the process of burning:

From the equation (1) we can see that mole ratio is $n(C):n(O_2):n(CO_2) = 1:1:1$

Find amount of substance of carbon:

$$n=m/M$$

$$n(C) = \frac{821 \text{ g}}{12 \text{ g/mol}} = 68.4 \text{ mol}$$

Then $n(O_2) = 68.4 \text{ mol}$

$$m(O_2) = M(O_2) \times n(O_2) = 32 \text{ g/mol} \times 68.4 \text{ mol} = 2188.8 \text{ g}$$

$$n(CO_2) = 68.4 \text{ mol}$$

$$m(CO_2) = M(CO_2) \times n(CO_2) = 44 \text{ g/mol} \times 68.4 \text{ mol} = 3009.6 \text{ g}$$

From the equation (2) we can see that mole ratio is $n(H):n(O_2):n(H_2O) = 4:1:2$,

then $n(O_2) = n(H)/4$, $n(H_2O) = n(H)/2$

$$\text{Find } n(H): \quad n(H) = m(H)/M(H) = 45 \text{ g} / 1 \text{ g/mol} = 45 \text{ mol}$$

$$n(O_2) = 45 \text{ mol}/4 = 11.3 \text{ mol}$$

$$m(O_2) = M(O_2) \times n(O_2) = 32 \text{ g/mol} \times 11.3 \text{ mol} = 361.6 \text{ g}$$

$$n(H_2O) = 45 \text{ mol} / 2 = 22.5 \text{ mol}$$

$$m(H_2O) = M(H_2O) \times n(H_2O) = 18 \text{ g/mol} \times 22.5 \text{ mol} = 405 \text{ g}$$

From the equation (3) we can see that mole ratio is $n(S):n(O_2):n(SO_2)=1:1:1$

Find $n(S)$:

$$n(S) = m(S)/M(S) = 15 \text{ g} / 32 \text{ g/mol} = 0.469 \text{ mol}$$

$$n(O_2) = 0.469 \text{ mol}$$

$$m(O_2) = 32 \text{ g/mol} \times 0.469 \text{ mol} = 15.0 \text{ g}$$

$$n(SO_2) = 0.469 \text{ mol}$$

$$m(SO_2) = M(SO_2) \times n(SO_2) = 64 \text{ g/mol} \times 0.469 \text{ mol} = 30.0 \text{ g}$$

So, determine (i) the mass of air required per kilogram of fuel:

Find the mass of oxygen required for burning 1 kg of coal

$$m(O_2) = 2188.8 \text{ g} + 361.6 \text{ g} + 15.0 \text{ g} = 2565.4 \text{ g}$$

The oxygen content of air by mass is 23 %.

$$\text{Then } m_{\text{air}} = 2565.4 \text{ g} / 0.23 = 11153.9 \text{ g}$$

$$\text{As air was with 20 \% excess then } m_{\text{air}} = 11153.9 + 11153.9 \times 0.2 = 13384.7 \text{ g} = 13.4 \text{ kg}$$

(ii) an analysis by mass of the products of combustion per kilogram of fuel is

Mass of fuel	Mass of CO_2	Mass of H_2O	Mass of SO_2
1 kg	3009.6 g \approx 3 kg	405 g = 0.405 kg	30.0 g = 0.03 kg

From the table data we can see that mass of CO_2 formed is the bigger, the mass of H_2O formed is $3009.6/405 = 7.4$ times less than the mass of CO_2 , and the mass of SO_2 is the minor ($3009.6/30 = 100$ times less than the mass of CO_2)

Answer: (i) 13.4 kg

(ii)

Mass of fuel	Mass of CO_2	Mass of H_2O	Mass of SO_2
1 kg	3009.6 g \approx 3 kg	405 g = 0.405 kg	30.0 g = 0.03 kg

From the table data we can see that mass of CO_2 formed is the bigger, the mass of H_2O formed is $3009.6/405 = 7.4$ times less than the mass of CO_2 , and the mass of SO_2 is the minor ($3009.6/30 = 100$ times less than the mass of CO_2)