Answer on Question \#79764, Physics / Molecular Physics |Thermodynamics

A coal sample consists of 82.1 \% carbon, 4.5 \% hydrogen, 1.5 \% sulphur, 3.0% oxygen and the remainder incombustible material. If 1 kg is burnt with 20% excess air, determine (i) the mass of air required per kilogram of fuel and (ii) prepare an analysis by mass of the products of combustion per kilogram of fuel.

Solution

$\mathrm{m}($ fuel $)=1 \mathrm{~kg}=1000 \mathrm{~g}$
$w(C)=0.821$
$w(H)=0.045$
$w(S)=0.015$
$w(0)=0.03$
$\mathrm{w}\left(\mathrm{O}_{2}\right)$ in air $=0.23$
$\mathrm{m}_{\text {air }}$-?
Combustible substances in fuel are : carbon, hydrogen and sulphur. Complete oxidation of these elements leads to oxide formation.
(i) Determine the mass of air required per kilogram of fuel.

For carbon: $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$

$$
n(C)=\frac{m}{M}=\frac{w(C) \times m_{a i r}}{M}=\frac{0.821 \times 1000 \mathrm{~g}}{12 \frac{\mathrm{~g}}{\mathrm{~mol}}}=68.4 \mathrm{~mol}
$$

The equation gives mole ratio $n(C): n\left(O_{2}\right)=1: 1, n\left(O_{2}\right)=68.4$ mol.
For sulphur: $\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$

$$
n(S)=\frac{m}{M}=\frac{w(S) \times m_{\text {air }}}{M}=\frac{0.015 \times 1000 \mathrm{~g}}{32 \frac{\mathrm{~g}}{\mathrm{~mol}}}=0.5 \mathrm{~mol}
$$

The equation gives mole ratio $n(\mathrm{~S}): \mathrm{n}\left(\mathrm{O}_{2}\right)=1: 1, \mathrm{n}\left(\mathrm{O}_{2}\right)=0.5 \mathrm{~mol}$.
For hydrogen: $4 \mathrm{H}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

$$
n(H)=\frac{m}{M}=\frac{w(H) \times m_{\text {air }}}{M}=\frac{0.045 \times 1000 \mathrm{~g}}{1 \frac{\mathrm{~g}}{\mathrm{~mol}}}=45 \mathrm{~mol}
$$

The equation gives mole ratio $n(H): n\left(O_{2}\right)=4: 1, n\left(O_{2}\right)=n(H) / 4=45 \mathrm{~mol} / 4=11.3 \mathrm{~mol}$.
Total amount of substance of oxygen used for combustion of carbon, sulphur and hydrogen is:
$n_{\text {total }}=68.4 \mathrm{~mol}+0.5 \mathrm{~mol}+11.3 \mathrm{~mol}=80.2 \mathrm{~mol}$
$\mathrm{m}\left(\mathrm{O}_{2}\right)=\mathrm{n} \times \mathrm{M}=80.2 \mathrm{~mol} \times 32 \mathrm{~g} / \mathrm{mol}=2566.4 \mathrm{~g}$

$$
w\left(O_{2}\right)=\frac{m\left(O_{2}\right)}{m_{\text {air }}} \Rightarrow m_{\text {air }}=\frac{m\left(O_{2}\right)}{w\left(O_{2}\right)}=\frac{2566.4 \mathrm{~g}}{0.23}=11158.3 \mathrm{~g}
$$

Excess of air is $20 \%, m_{\text {excess iar }}=11158.3 \mathrm{~g} \times 0.2=2231.7 \mathrm{~g}$
Total mass of air with 20% excess is $11158.3 \mathrm{~g}+2231.7 \mathrm{~g}=13390 \mathrm{~g}=13.4 \mathrm{~kg}$
(ii) Prepare an analysis by mass of the products of combustion per kilogram of fuel.

Products of combustion are : $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and SO_{2}

For CO_{2} :
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$

The equation gives mole ratio $n(C): n\left(\mathrm{CO}_{2}\right)=1: 1, n\left(\mathrm{CO}_{2}\right)=68.4 \mathrm{~mol}$.
$\mathrm{m}\left(\mathrm{CO}_{2}\right)=\mathrm{n} \times \mathrm{M}=68.4 \mathrm{~mol} \times 44 \mathrm{~g} / \mathrm{mol}=3009.6 \mathrm{~g}$
For SO_{2} :
$\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$
The equation gives mole ratio $n(S): n\left(\mathrm{SO}_{2}\right)=1: 1, n\left(\mathrm{SO}_{2}\right)=0.5 \mathrm{~mol}$.
$\mathrm{m}\left(\mathrm{SO}_{2}\right)=\mathrm{n} \times \mathrm{M}=0.5 \mathrm{~mol} \times 64 \mathrm{~g} / \mathrm{mol}=32 \mathrm{~g}$

For $\mathrm{H}_{2} \mathrm{O}$:
$4 \mathrm{H}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

The equation gives mole ratio $n(H): n\left(H_{2} \mathrm{O}\right)=4: 2, n\left(\mathrm{H}_{2} \mathrm{O}\right)=n(H) / 2=45 \mathrm{~mol} / 2=22.5 \mathrm{~mol}$
$\mathrm{m}\left(\mathrm{H}_{2} \mathrm{O}\right)=\mathrm{n} \times \mathrm{M}=22.5 \mathrm{~mol} \times 18 \mathrm{~g} / \mathrm{mol}=405 \mathrm{~g}$
Combustion of 1 kg of fuel gives 3009.6 g of carbon dioxide, 405 g of water and 32 g of sulphur dioxide. The main product of combustion is carbon dioxide, the minor product is sulphur dioxide.

$$
\begin{aligned}
& w\left(\mathrm{CO}_{2}\right)=\frac{3009.6}{3009.6+405+32} \times 100 \%=87.3 \% \\
& w\left(\mathrm{SO}_{2}\right)=\frac{32}{3009.6+405+32} \times 100 \%=0.9 \% \\
& w\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{405}{3009.6+405+32} \times 100 \%=11.8 \%
\end{aligned}
$$

Answer: (i) 13.4 kg
(ii) Combustion of 1 kg of fuel gives 3009.6 g of carbon dioxide, 405 g of water and 32 g of sulphur dioxide. The main product of combustion is carbon dioxide, the minor product is sulphur dioxide.
$w\left(\mathrm{CO}_{2}\right)=87.3 \%, w\left(\mathrm{SO}_{2}\right)=0.9 \%, w\left(\mathrm{H}_{2} \mathrm{O}\right)=11.8 \%$.
Answer provided by https://www.AssignmentExpert.com

