Question \#79755, Physics / Classical Mechanics

Mary ants throw a can straight up into the air and then hit it with second can. She wants the collision to occur at a height $\mathrm{h}=10 \mathrm{~m}$ above the throw point. In addition she knows that she needs $\mathrm{t} 1=4.0 \mathrm{~s}$ between successive throws. Assume that she throws both cans at same speed. Take $g=9.81 \mathrm{~m} / \mathrm{s}^{\wedge} 2$.find the initial speed of the cans?

Solution

Let the height of the first can be x, that of the second can be y; and both cans be thrown at speed v.

$$
\begin{gathered}
x(t)=v t-g \frac{t^{2}}{2} \\
y(t)=v\left(t-t_{1}\right)-g \frac{\left(t-t_{1}\right)^{2}}{2} \\
x(t)=y(t)=h
\end{gathered}
$$

From the first height equation:

$$
v=\frac{h}{t}+\frac{g t}{2}
$$

Substituted into the second equation:

$$
\begin{gathered}
h=\left(\frac{h}{t}+\frac{g t}{2}\right)\left(t-t_{1}\right)-\frac{g\left(t-t_{1}\right)^{2}}{2} \\
10=\left(\frac{10}{t}+9.81 \frac{t}{2}\right)(t-4)-\frac{9.81(t-4)^{2}}{2} \\
t=4.457 \mathrm{~s} . \\
v=\frac{10}{4.457}+\frac{9.81}{2} 4.457=24.1 \frac{\mathrm{~m}}{\mathrm{~s}} .
\end{gathered}
$$

Answer: 24. $1 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Answer provided by https://www.AssignmentExpert.com

