Answer on Question 79671, Physics, Other

Question:

A revolver of mass 500 g fires a bullet of mass 10 g with a speed of $100 \mathrm{~m} / \mathrm{s}$. Find the following:

1) momentum of the bullet;
2) initial momentum of revolver and bullet as a system;
$3)$ recoil velocity of the revolver.

Solution:

1) We can find the momentum of the bullet from the formula:

$$
p_{b}=m_{b} v_{b}=0.01 \mathrm{~kg} \cdot 100 \frac{\mathrm{~m}}{\mathrm{~s}}=1 \mathrm{~kg} \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

2) Initially both the revolver and the bullet are at rest, therefore the initial momentum of the system is zero:

$$
p_{i}=m_{b} v_{b(\text { initial })}+M_{r} v_{r(\text { initial })}=0
$$

3) We can find the recoil velocity of the revolver from the law of conservation of momentum:

$$
\begin{gathered}
p_{i}=p_{f} \\
M_{r} v_{\text {recoil }}+m_{b} v_{b}=0, \\
M_{r} v_{\text {recoil }}=-m_{b} v_{b}, \\
v_{\text {recoil }}=-\frac{m_{b} v_{b}}{M_{r}}=-\frac{0.01 \mathrm{~kg} \cdot 100 \frac{\mathrm{~m}}{\mathrm{~s}}}{0.5 \mathrm{~kg}}=-2 \frac{\mathrm{~m}}{\mathrm{~s}} .
\end{gathered}
$$

The sign minus indicates that the recoil velocity of the revolver directed in the opposite direction to the velocity of the bullet.

Answer:

1) $p_{b}=1 \mathrm{~kg} \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$.
2) $p_{i}=0$.
3) $v_{\text {recoil }}=-2 \frac{\mathrm{~m}}{\mathrm{~s}}$.
