Answer on Question \#79626 Physics / Other

Two guitar wires A and B identical in all respects except that the diameter of A is twice the diameter of B and are subjected to same tension. The ratio, fundamental frequency produced by A / fundamental frequency produced by B.

Solution:

The fundamental frequency

$$
f=\frac{v}{2 L}
$$

Here $v=\sqrt{\frac{T}{\frac{m}{L}}}$ is the wave velocity.
Finally

$$
f=\frac{\sqrt{\frac{T}{\frac{m}{L}}}}{2 L}
$$

T is a string tension
m is a string mass
L is a string length
Thus

$$
\frac{f_{A}}{f_{B}}=\frac{\sqrt{\frac{T_{A}}{m_{A}}}}{\frac{\sqrt{\frac{L_{A}}{2}}}{\frac{T_{B}}{\frac{T}{B}^{L_{B}}}}}=\sqrt{\frac{m_{B}}{m_{B}}}
$$

Since

$$
m=\text { density } \times \text { volume }=\rho V=\rho L A=\rho L \frac{\pi d^{2}}{4}
$$

So

$$
\frac{f_{A}}{f_{B}}=\sqrt{\frac{d_{B}^{2}}{d_{A}^{2}}}=\frac{d_{B}}{d_{A}}=\frac{d_{B}}{2 d_{B}}=\frac{1}{2}
$$

Answer: $\frac{f_{A}}{f_{B}}=\frac{1}{2}$

