Answer on Question \#79566, Physics / Electromagnetism

A uniform plane wave of 100 kHz travelling in free space strikes a large block of a material having $\varepsilon=4 \varepsilon_{0}, \mu=9 \mu_{0}$ and $\sigma=0$ normal to the surface. If the incident magnetic field vector is given by

$$
\overrightarrow{\mathbf{B}}=10^{-6} \cos (\omega t-\beta y) \hat{\mathbf{z}} \text { tesla }
$$

write the complete expressions for the incident, reflected, and transmitted field vectors.

Solution:

When an electromagnetic wave travelling in one dielectric medium impinges on another dielectric medium with a different intrinsic impedance, part of the incident wave is reflected and part is transmitted.

The incident wave fields:

$$
\begin{aligned}
\overrightarrow{\mathbf{E}}_{i} & =E_{0} e^{-\gamma_{1} z} \cdot \hat{\mathbf{x}} \\
\overrightarrow{\mathbf{H}}_{i} & =\frac{E_{0}}{\eta_{1}} e^{-\gamma_{1} z} \cdot \hat{\mathbf{y}}
\end{aligned}
$$

The reflected wave fields:

$$
\begin{aligned}
\overrightarrow{\mathbf{E}}_{t} & =\Gamma E_{0} e^{-\gamma_{1} z} \cdot \hat{\mathbf{x}} \\
\overrightarrow{\mathbf{H}}_{t} & =-\Gamma \frac{E_{0}}{\eta_{1}} e^{\gamma_{1} z} \cdot \hat{\mathbf{y}}
\end{aligned}
$$

The transmitted wave fields:

$$
\begin{aligned}
\overrightarrow{\mathbf{E}}_{t} & =\tau E_{0} e^{-\gamma_{2} z} \cdot \hat{\mathbf{x}} \\
\overrightarrow{\mathbf{H}}_{t} & =\tau \frac{E_{0}}{\eta_{2}} e^{-\gamma_{2} z} \cdot \hat{\mathbf{y}}
\end{aligned}
$$

where Γ is the reflection coefficient, τ - transmission coefficient, $\eta=\sqrt{\mu / \varepsilon}$.
(i) The incident wave fields:
$\overrightarrow{\mathbf{E}}_{i}$ has the magnitude

$$
\begin{gathered}
E_{0}=H_{0} \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=\frac{B_{0}}{\sqrt{\mu_{0} \varepsilon_{0}}}=\frac{10^{-6}}{\sqrt{\mu_{0} \varepsilon_{0}}}=10^{-6} \times 3 \times 10^{8}=3 \times 10^{2} \\
\overrightarrow{\mathbf{E}}_{i}=E_{0} e^{-\gamma_{1} z} \cdot \hat{\mathbf{x}}=3 \times 10^{2} \cos (\omega t-\beta y)(-\hat{\mathbf{x}}) \\
\quad \beta=\frac{\omega}{c}=\frac{2 \pi \times 100 \times 10^{3}}{3 \times 10^{8}}=\frac{\pi}{1500}
\end{gathered}
$$

So,

$$
\begin{gathered}
\overrightarrow{\mathbf{E}}_{i}=3 \times 10^{2} \cos \left(2 \pi \times 10^{5} t-\frac{\pi}{1500} y\right)(-\hat{\mathbf{x}}) \mathrm{V} / \mathrm{m} \\
\overrightarrow{\mathbf{H}}_{i}=\frac{\overrightarrow{\mathbf{B}}_{i}}{\mu_{0}}=\frac{10^{-6}}{\mu_{0}} \cos (\omega t-\beta y) \hat{\mathbf{z}}=\frac{10^{-6}}{4 \pi \times 10^{-7}} \cos (\omega t-\beta y)= \\
=\frac{2.5}{\pi} \cos \left(2 \pi \times 10^{5} t-\frac{\pi}{1500} y\right) \hat{\mathbf{z}} \mathrm{A} / \mathrm{m}
\end{gathered}
$$

(ii) We assume that the incident electric field is reflected with a reflection coefficient Γ and transmitted with a transmitted with a transmission coefficient τ. That implies that if the electric field intensity of the incident, reflected and transmitted waves at the boundary $(z=0)$ are $E_{i 0}, E_{r o}$ and $E_{t 0}$ respectively, then $E_{r 0}=\Gamma E_{i 0}$ and $E_{t 0}=\tau E_{i 0}$.

$$
\tau=1+\Gamma
$$

and

$$
\begin{gathered}
\Gamma=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}= \\
\eta_{1}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=120 \pi \Omega \\
\eta_{2}=\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}}=\sqrt{\frac{9 \mu_{0}}{4 \varepsilon_{0}}}=\frac{3}{2} \times 120 \pi=180 \pi \Omega \\
\Gamma=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}=\frac{180-120}{180+120}=0.2 \\
\tau=\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}}=\frac{2 * 180 \pi}{300 \pi}=1.2
\end{gathered}
$$

Using the general properties above, we conclude that ($\beta_{r}=-\beta$ because wave propagates in opposite direction)

$$
\begin{gathered}
\overrightarrow{\mathbf{E}}_{r}=0.6 \times 10^{2} \cos \left(2 \pi \times 10^{5} t+\frac{\pi}{1500} y\right)(\hat{\mathbf{x}}) \mathrm{V} / \mathrm{m} \\
\overrightarrow{\mathbf{H}}_{r}=\frac{1.5}{\pi} \cos \left(2 \pi \times 10^{5} t+\frac{\pi}{1500} y\right) \hat{\mathbf{z}} \mathrm{A} / \mathrm{m}
\end{gathered}
$$

(iii)

$$
\beta_{2}=2 \pi f \sqrt{\mu_{2} \varepsilon_{2}}=2 \pi f \sqrt{36 \mu_{0} \varepsilon_{0}}=2 * \pi * 100 * 10^{3} * 6 * \frac{1}{3 * 10^{8}}=\frac{\pi}{250}
$$

So,

$$
\overrightarrow{\mathbf{E}}_{t}=3.6 \times 10^{2} \cos \left(2 \pi \times 10^{5} t-\frac{\pi}{250} y\right)(-\hat{\mathbf{x}}) \mathrm{V} / \mathrm{m}
$$

$$
\overrightarrow{\mathbf{H}}_{t}=\frac{3}{\pi} \cos \left(2 \pi \times 10^{5} t-\frac{\pi}{250} y\right) \hat{\mathbf{z}} \mathrm{A} / \mathrm{m}
$$

Answer:

Incident wave:

$$
\begin{gathered}
\overrightarrow{\mathbf{E}}_{i}=3 \times 10^{2} \cos \left(2 \pi \times 10^{5} t-\frac{\pi}{1500} y\right)(-\hat{\mathbf{x}}) \mathrm{V} / \mathrm{m} \\
\overrightarrow{\mathbf{H}}_{i}=\frac{2.5}{\pi} \cos \left(2 \pi \times 10^{5} t-\frac{\pi}{1500} y\right) \hat{\mathbf{z}} \mathrm{A} / \mathrm{m}
\end{gathered}
$$

Reflected wave:

$$
\begin{gathered}
\overrightarrow{\mathbf{E}}_{r}=0.6 \times 10^{2} \cos \left(2 \pi \times 10^{5} t+\frac{\pi}{1500} y\right)(\hat{\mathbf{x}}) \mathrm{V} / \mathrm{m} \\
\overrightarrow{\mathbf{H}}_{r}=\frac{1.5}{\pi} \cos \left(2 \pi \times 10^{5} t+\frac{\pi}{1500} y\right) \hat{\mathbf{z} A} \mathrm{~m}
\end{gathered}
$$

Transmitted wave:

$$
\begin{gathered}
\overrightarrow{\mathbf{E}}_{t}=3.6 \times 10^{2} \cos \left(2 \pi \times 10^{5} t-\frac{\pi}{250} y\right)(-\widehat{\mathbf{x}}) \mathrm{V} / \mathrm{m} \\
\overrightarrow{\mathbf{H}}_{t}=\frac{3}{\pi} \cos \left(2 \pi \times 10^{5} t-\frac{\pi}{250} y\right) \hat{\mathbf{z}} \mathrm{A} / \mathrm{m}
\end{gathered}
$$

Answer provided by https://www.AssignmentExpert.com

