Answer on Question \#79543 - Physics - Electric Circuits

3. a) A positive $20 \mu \mathrm{C}$ charge is placed at the centre of a circle of radius 20 cm . If we move a positive $2 \mu \mathrm{C}$ charge once along the circumference of the circle, will any work be done in the process? Justify your answer.

Solution

Calculate the electric potential done by $Q=20 \mu \mathrm{C}$ charge at a distance $r=20 \mathrm{~cm}$ in any direction:

$$
V_{1}=\frac{Q}{4 \pi \varepsilon_{0} r}=\frac{20 \cdot 10^{-6}}{4 \cdot 3.14 \cdot 8.85 \cdot 10^{-12} \cdot 0.2}=8.99 \mathrm{MV} .
$$

If the smaller charge is moved once along the circumference, it will constantly be at a distance 20 cm from the first charge where potential V is also equal to V_{1}. And the work done on the charge $q=2 \mu \mathrm{C}$ is:

$$
W=q\left(V_{1}-V\right)=2 \cdot 10^{-6}\left(8.99 \cdot 10^{6}-8.99 \cdot 10^{6}\right)=0
$$

Thus, no work will be done in this process; the $2 \mu \mathrm{C}$ charge is moving along the equipotential lines.

Answer

No work will be done because the smaller charge moves along the equipotential lines.
Answer provided by https://www.AssignmentExpert.com

