Answer on Question \#79533- Physics - Atomic and Nuclear Physics

Question: The radius of hydrogen atom is $0.43 \times 10^{12} \mathrm{~m}$ convert it in $\mathrm{cm}, \mathrm{mm}, \mathrm{nm}$

Answer:

First of all, one should note that the given number (pay attention to the power) is extremely large: it is almost three times the distance between the Sun and the Earth. Obviously, there is a typos here, however, switching to power - 12 also does not lead to the right result.

According to [1], the radius of a hydrogen atom is about $0.53 \times 10^{-10} \mathrm{~m}$ (it is called Bohr radius). In order to calculate this value in cm, mm and nm , one should recall that $1 \mathrm{~cm}=10^{-2} \mathrm{~m}$; $1 \mathrm{~mm}=10^{-3} \mathrm{~m} ; 1 \mathrm{~nm}=10^{-9} \mathrm{~m}$. Hence,

$$
\begin{align*}
0.53 \cdot 10^{-10} m & =0.53 \cdot \frac{10^{-10}}{10^{-2}} \mathrm{~cm}=0.53 \cdot 10^{-8} \mathrm{~cm} \\
& =0.53 \cdot \frac{10^{-10}}{10^{-3}} \mathrm{~mm}=0.53 \cdot 10^{-7} \mathrm{~mm} \tag{1}\\
& =0.53 \cdot \frac{10^{-10}}{10^{-9}} \mathrm{~nm}=0.53 \cdot 10^{-1} \mathrm{~nm}
\end{align*}
$$

In case if it was necessary to consider the given number, there is also an answer as follows:

$$
\begin{equation*}
0.43 \cdot 10^{12} \mathrm{~m}=0.43 \cdot 10^{14} \mathrm{~cm}=0.43 \cdot 10^{15} \mathrm{~mm}=0.43 \cdot 10^{21} \mathrm{~nm} \tag{2}
\end{equation*}
$$

[1] (Electronic resource) https://en.wikipedia.org/wiki/Hydrogen atom
Answer provided by https://www.AssignmentExpert.com

