Answer on Question \#79496, Physics / Electric Circuits

Find capacitance between the parallel plates if the dielectric constant is varying from k 1 to K2 diagonally

Solution

Agree that length of both plates is L, breadth is b, distance between plates is d. Their area then is $A=b \cdot L$. Imagine that the capacitor is split on $\mathrm{d} l$ long pieces alongside (in parallel) into equal pairs of two capacitors joined in series: the first small capacitor with K_{1} dielectric constant on thickness $d-y$ and the second small capacitor with K_{2} dielectric of thickness y.

Hence, Plates' area of these smaller capacitors is $b \cdot \mathrm{~d} l$. Aggregate capacity of these two capacitors is

$$
\begin{gathered}
\frac{1}{\mathrm{~d} C}=\frac{1}{\varepsilon_{0} b \cdot \mathrm{~d} l}\left(\frac{d-y}{K_{1}}+\frac{y}{K_{2}}\right), \\
y=d \frac{l}{L} .
\end{gathered}
$$

Then

$$
\mathrm{d} C=\frac{\varepsilon_{0} A K_{1} K_{2} \cdot \mathrm{~d} l}{d} \cdot \frac{K_{1} K_{2}}{K_{2} L+l\left(K_{1}-K_{2}\right)},
$$

Then integrate this from 0 to L by $\mathrm{d} l$:

$$
\begin{gathered}
\int \mathrm{d} C=\int_{0}^{L} \frac{\varepsilon_{0} A K_{1} K_{2}}{d} \cdot \frac{K_{1} K_{2}}{K_{2} L+l\left(K_{1}-K_{2}\right)} \mathrm{d} l \\
C=\frac{\varepsilon_{0} A K_{1} K_{2}}{d\left(K_{1}-K_{2}\right)} \cdot \ln \frac{K_{1}}{K_{2}}
\end{gathered}
$$

Answer

$$
C=\frac{\varepsilon_{0} A K_{1} K_{2}}{d\left(K_{1}-K_{2}\right)} \cdot \ln \frac{K_{1}}{K_{2}}
$$

Answer provided by https://www.AssignmentExpert.com

