Answer on Question \#79372- Physics- Electric Circuits

Question: Two charges, $q 1=-8 \mu \mathrm{C}$ and $\mathrm{q} 2=+12 \mu \mathrm{C}$, are at a 12 cm of distance. Find the resultant force and direction over a charge $q 3=-4 \mu C$, located in the middle between the other two forces.

Answer:

Since $q_{1}<0, q_{2}>0$ and $q_{3}<0$, the charge q_{1} repulses q_{3} whereas q_{2} attracts q_{3}. Hence, both Coulomb forces point towards the charge q_{2} (see figure 1 for details). The net force is just a vector sum of these two separate forces, and it points also towards the charge q_{2}. In order to find its magnitude, one should sum the absolute values of these two forces (this procedure is equivalent to making projection along the x -axis):

$$
\begin{equation*}
F_{n e t}=\left|F_{13}\right|+\left|F_{23}\right| . \tag{1}
\end{equation*}
$$

According to the Coulomb's law:

$$
\begin{align*}
& \left|F_{13}\right|=k \frac{\left|q_{1}\right|\left|q_{3}\right|}{r_{13}^{2}}=k \frac{4\left|q_{1} \| q_{3}\right|}{d^{2}}, \tag{2}\\
& \left|F_{23}\right|=k \frac{\left|q_{2} \| q_{3}\right|}{r_{23}^{2}}=k \frac{4\left|q_{2} \| q_{3}\right|}{d^{2}}, \tag{3}
\end{align*}
$$

where $r_{13}=r_{23}=d / 2$ according to the initial conditions.
As a result,

$$
\begin{equation*}
F_{n e t}=4 k \frac{\left|q_{3}\right|\left(\left|q_{1}\right|+\left|q_{2}\right|\right)}{d^{2}} . \tag{4}
\end{equation*}
$$

Substituting numerical values into (4), we obtain:

$$
\begin{equation*}
F_{\text {net }}=4 \cdot 9 \cdot 10^{9} \frac{4 \cdot 10^{-6}(8+12) \cdot 10^{-6}}{\left(12 \cdot 10^{-2}\right)^{2}}=200 \mathrm{~N} . \tag{5}
\end{equation*}
$$

Finally, one can conclude that the resultant force is equal to 200 N and point towards the charge q_{2}.

Figure 1.
Answer provided by https://www.AssignmentExpert.com

