Answer on Question \#79364 - Physics - Molecular Physics / Thermodynamics

Question: Two litres of hydrogen at a pressure of $10^{\wedge} 5$ Pa expands adiabatically to 1.5 times the initial volume. Find the work done?

Answer:

The first law of thermodynamics [1] can be formulated in the following way:

$$
\begin{equation*}
Q=\Delta U+A \tag{1}
\end{equation*}
$$

where Q is amount of heat supplied to the system, ΔU is the change in the internal energy of the system, A is the work done by the system. For adiabatic process $Q=0$, so that the work can be done due to the loss of the internal energy only:

$$
\begin{equation*}
A=-\Delta U . \tag{2}
\end{equation*}
$$

Hydrogen is a diatomic (ideal) gas, and each of its molecules possesses $i=5$ degrees of freedom. Hence, the change in its internal energy should be written as:

$$
\begin{equation*}
\Delta U=\frac{5}{2} \nu R\left(T_{2}-T_{1}\right) . \tag{3}
\end{equation*}
$$

According to Mendeleev-Clapeyron equation

$$
\begin{align*}
& p_{1} V_{1}=v R T_{1}, \\
& p_{2} V_{2}=v R T_{2}, \tag{4}
\end{align*}
$$

Hence,

$$
\begin{equation*}
v R\left(T_{2}-T_{1}\right)=p_{2} V_{2}-p_{1} V_{1} . \tag{5}
\end{equation*}
$$

There is also one more useful relation for the adiabatic processes:

$$
\begin{equation*}
p V^{\gamma}=\text { Const } \tag{6}
\end{equation*}
$$

where γ is the adiabatic index (= heat capacity ratio). For diatomic ideal gases $\gamma=\frac{7}{5}$ (see [2] for details).

As a result, one can show that:

$$
\begin{equation*}
p_{2}=p_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma} . \tag{7}
\end{equation*}
$$

Combining (2)-(3), (5), (7) together and taking into account the relation $V_{2}=1.5 V_{1}=\frac{3}{2} V_{1}$, we deduce

$$
\begin{equation*}
A=-\frac{5}{2}\left(p_{2} V_{2}-p_{1} V_{1}\right)=\frac{5}{2} p_{1} V_{1}\left[1-\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}\right]=\frac{5}{2} p_{1} V_{1}\left[1-\left(\frac{2}{3}\right)^{2 / 5}\right] . \tag{8}
\end{equation*}
$$

Substituting the numerical values, we obtain:

$$
\begin{equation*}
A \approx \frac{5}{2} \cdot 10^{5} \cdot 2 \cdot 10^{-3}(1-0.85)=425 \mathrm{~J} . \tag{9}
\end{equation*}
$$

[1] (Electronic resource) https://en.wikipedia.org/wiki/First_law_of_thermodynamics
[2] (Electronic resource) https://en.wikipedia.org/wiki/Heat capacity ratio
Answer provided by https://www.AssignmentExpert.com

