Answer on Question \#79316- Physics- Quantum Mechanics

Question: 1. If sigma x, sigma y, and sigma z are three components of a pauli spin matrix sigma, then show that [sigma x, sigma $y]=2 i \operatorname{sigma} z ;[\operatorname{sigma} y, \operatorname{sigma} z]=2 i \operatorname{sigma} x$

Answer:

In the so-called σ_{z}-representation the Pauli matrices can be written in the form as follows [1]:

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

One should also recall the definition of the commutator in quantum mechanics:

$$
\begin{equation*}
[\mathrm{A}, \mathrm{~B}]=\mathrm{AB}-\mathrm{BA}, \tag{2}
\end{equation*}
$$

where A and B are two arbitrary quantum operators.
Substituting the matrices (1) into the definition (2), we obtain:

$$
\begin{align*}
& {\left[\sigma_{x}, \sigma_{y}\right]=\sigma_{x} \sigma_{y}-\sigma_{y} \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)-\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
2 i & 0 \\
0 & -2 i
\end{array}\right)=} \tag{3}\\
& =2 i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=2 i \sigma_{z}
\end{align*}
$$

In a similar fashion we get:

$$
\begin{align*}
& {\left[\sigma_{y}, \sigma_{z}\right]=\sigma_{y} \sigma_{z}-\sigma_{z} \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)-\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 2 i \\
2 i & 0
\end{array}\right)=} \\
& =2 i\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=2 i \sigma_{x} \tag{4}
\end{align*}
$$

[1] (Electronic resource) https://en.wikipedia.org/wiki/Pauli matrices
Answer provided by https://www.AssignmentExpert.com

