Answer on Question\#79283 - Physics - Electromagnetism

A stiff metal rod kept over two knife edges of length $L=1 \mathrm{~m}$. Rod carries current of $I=16 \mathrm{~A}$ and rolls over rails without slipping due to uniform magnetic field of $B=0.5 \mathrm{~T}$ perpendicular pointing downwards. Rod starts from rest and attains speed of $K / \sqrt{5}$ when leaves rails. Find value of K.

Solution:

Let's denote the length of the rod as l, then the work done magnetic field is given by

$$
A_{m}=I B l L
$$

The translational kinetic energy:

$$
E_{t}=\frac{1}{2} m v^{2},
$$

where m - mass of the rod, v - linear velocity of the rod.
The rotational kinetic energy:

$$
E_{r}=\frac{1}{2} I \omega^{2}
$$

where I - moment of inertia of the rod around its axis, ω - angular velocity of the rod.
The moment of inertia of a cylinder of mass m and radius r is given by

$$
I=\frac{1}{2} m r^{2}
$$

Since the rod doesn't slip, its linear and angular velocities are related as follows

$$
v=\omega r
$$

Total kinetic energy:

$$
E_{k}=E_{t}+E_{r}=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}=\frac{1}{2} m v^{2}+\frac{1}{2} \frac{1}{2} m r^{2}\left(\frac{v}{r}\right)^{2}=\frac{3}{4} m v^{2}
$$

According to the law of conservation of energy the kinetic energy gained by the rod is equal to the work done by the magnetic field:

$$
E_{k}=A_{m}
$$

Thus

$$
\begin{gathered}
\frac{3}{4} m v^{2}=I B l L \\
v=\sqrt{\frac{4 I B l L}{3 m}}=\sqrt{\frac{20 I B l L}{3 m}} / \sqrt{5}
\end{gathered}
$$

Therefore

$$
K=\sqrt{\frac{20 I B l L}{3 m}}
$$

For numerical answer the length of the $\operatorname{rod} l$ and its mass are needed.
Answer: $K=\sqrt{\frac{20 I B L L}{3 m}}$.
Answer provided by https://www.AssignmentExpert.com

