Answer on Question\#78929-Physics - Other

A plane has a takeoff speed of $88.3 \mathrm{~m} / \mathrm{s}$ and requires 1365 m to reach that speed. Determine the acceleration of the plane and the time required to reach this speed.

Solution:

The final and initial velocities v_{f}, v_{i}, acceleration a and distance d are related by the following expression

$$
d=\frac{v_{f}^{2}-v_{i}^{2}}{2 a}
$$

In our case $v_{f}=88 \mathrm{~m} / \mathrm{s}, v_{i}=0 \mathrm{~m} / \mathrm{s}, d=1365 \mathrm{~m}$, thus we have

$$
a=\frac{v_{f}^{2}-v_{i}^{2}}{2 d}=\frac{\left(88 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}-\left(0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2 \cdot 1365 \mathrm{~m}}=2.84 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

The final and initial velocities v_{f}, v_{i}, acceleration a and time t are related by the following expression

$$
v_{f}-v_{i}=a t
$$

Thus the time required to reach this speed:

$$
t=\frac{v_{f}-v_{i}}{a}=\frac{88 \frac{\mathrm{~m}}{\mathrm{~s}}}{2.84 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=31 \mathrm{~s}
$$

Answer: acceleration: $2.84 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$, time: 31 s .
Answer provided by https://www.AssignmentExpert.com

