## Answer on Question\#78859-Physics - Molecular physics - Thermodynamics

A centrifugal compressor which represents an open system takes in air at a pressure of $P_{i}=2$ bar and a temperature of $28^{\circ} \mathrm{C}$ at the rate of $1.4 \mathrm{~m} / \mathrm{s}$. Compression takes place according to the law $P V^{1.3}=C$ and the delivery pressure is $P_{f}=3.5$ bar. Determine
(i) the input power and
(ii) the heat transfer rate.

## Solution:

Initial temperature in Kelvin:

$$
T_{i}=28^{\circ} \mathrm{C}=301 \mathrm{~K}
$$

The elementary work done by compressor is given by

$$
d A=P d V
$$

Since $P=C / V^{1.3}$, we obtain

$$
A=C \int_{V_{i}}^{V_{f}} \frac{d V}{V^{1.3}}=\frac{10}{3} C\left(V_{i}^{-0.3}-V_{f}^{-0.3}\right)=\frac{10}{3} C V_{i}^{-0.3}\left(1-\left(\frac{V_{i}}{V_{f}}\right)^{0.3}\right)
$$

According to the given law of compression:

$$
\left(\frac{V_{f}}{V_{i}}\right)^{1.3}=\frac{P_{i}}{P_{f}}
$$

Using this expression we can rewrite the work in the following way:

$$
A=P_{i} V_{i}\left(1-\left(\frac{P_{f}}{P_{i}}\right)^{\frac{3}{13}}\right)
$$

The change of the internal energy of the $v$ moles of air is given by

$$
\Delta U=2.5 v R \Delta T=2.5 v R\left(T_{f}-T_{i}\right)
$$

Using the ideal gas law $(P V=v R T)$ we obtain

$$
v=\frac{P_{i} V_{i}}{R T_{i}}
$$

Also due to $P V^{1.3}=C$ we have

$$
T_{f}=T_{i}\left(\frac{P_{f}}{P_{i}}\right)^{\frac{23}{13}}
$$

The heat transfer is given by

$$
Q=A+\Delta U
$$

The work for one cubic meter of air:

$$
A_{1}=2 \mathrm{bar} \cdot 1 \mathrm{~m}^{3}\left(1-\left(\frac{3.5 \mathrm{bar}}{2 \mathrm{bar}}\right)^{\frac{3}{13}}\right)=-13785 \mathrm{~J}
$$

Change of internal energy of one cubic meter of air:

$$
\Delta U_{1}=2.5 P_{i} V_{i}\left(\left(\frac{P_{f}}{P_{i}}\right)^{\frac{23}{13}}-1\right)=2.5 \cdot 2 \mathrm{bar} \cdot 1 \mathrm{~m}^{3}\left(\left(\frac{3.5 \text { bar }}{2 \text { bar }}\right)^{\frac{23}{13}}-1\right)=845.74 \mathrm{~kJ}
$$

Thus (for one cubic meter)

$$
Q_{1}=A_{1}+\Delta U_{1}=-13785 \mathrm{~J}+845.74 \mathrm{~kJ}=832 \mathrm{~kJ}
$$

The input power (since the rate of pump is $1.4 \mathrm{~m}^{3} / \mathrm{s}$ ):

$$
N=-A_{1} \cdot 1.4 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}=19.3 \mathrm{~kW}
$$

The heat transfer rate (due to the cooling of compressed air):

$$
\frac{d Q}{d t}=Q_{1} \cdot 1.4 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}=1.165 \mathrm{MW}
$$

Answer: input power: 19.3 kW , heat transfer rate: 1.165 MW.
Answer provided by https://www.AssignmentExpert.com

