Answer on Question\#78799 - Physics - Molecular Physics

Evaluate and compare the work and heat transfer when $m=0.8 \mathrm{~kg}$ of air, at a pressure of $P=$ 2.6 Bar and a temperature of C degree, expand in a closed thermodynamic system to three times its initial volume: (1) according to Boyles law and, (2) according to Charles law.

The characteristic gas constant for air is $R=200 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$ and its specific heat capacity at constant volume is $C_{V}=700 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$.

Solution:

$T_{i}=23^{\circ} \mathrm{C}=300 \mathrm{~K}-$ initial temperature.
(1) According to Boyles law $P V=$ const. Thus the internal energy of the gas doesn't change and the heat transfer is given by the work of the gas, which in this case is

$$
\Delta Q_{B}=m R T \ln \frac{V_{f}}{V_{i}}
$$

where V_{i} - initial volume of the gas, V_{f} - final volume.
Since $V_{f}=3 V_{i}$, we obtain

$$
\Delta Q_{B}=0.8 \mathrm{~kg} \cdot 200 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \cdot 300 \mathrm{~K} \ln 3=52.7 \mathrm{~kJ}
$$

(2) According to Charles law $V / T=$ const, thus

$$
\frac{V_{i}}{T_{i}}=\frac{V_{f}}{T_{f}}
$$

Since $V_{f}=3 V_{i}, T_{f}=3 T_{i}$. The heat transfer is given by

$$
\Delta Q_{C}=P \Delta V+m C_{V} \Delta T
$$

According to the ideal gas law $P V=m R T$, thus the first member (the work of the gas) in the upper equation can be rewritten in the following way:

$$
A_{C}=P \Delta V=m R \Delta T=0.8 \mathrm{~kg} \cdot 200 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \cdot 2 \cdot 300 \mathrm{~K}=96 \mathrm{~kJ}
$$

Therefore we obtain

$$
\begin{aligned}
\Delta Q_{C} & =m R \Delta T+m C_{V} \Delta T=m\left(R+C_{V}\right) \Delta T=m\left(R+C_{V}\right) 2 T_{i}= \\
& =0.8 \mathrm{~kg}\left(200 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}+700 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}\right) 2 \cdot 300 \mathrm{~K}=432 \mathrm{~kJ}
\end{aligned}
$$

Thus the work of the gas is $A_{C} / \Delta Q_{B}=96 \mathrm{~kJ} / 52.7 \mathrm{~kJ}=1.8$ times greater according to Charles law, than to Boyles law. Also the heat transfer in case of Charles law is 8.2 times greater than in case of Boyles law.

Answer:

(1) $\Delta Q_{B}=52.7 \mathrm{~kJ}$
$A_{B}=\Delta Q_{B}=52.7 \mathrm{~kJ}$
(2) $\Delta Q_{C}=432 \mathrm{~kJ}$
$A_{C}=96 \mathrm{~kJ}$
Answer provided by https://www.AssignmentExpert.com

