Answer on Question 78735, Physics, Other

Question:

Rain is falling vertically with a velocity of $6 \mathrm{~km} / \mathrm{h}$. A person is walking with a velocity of $4 \mathrm{~km} / \mathrm{h}$. At what angle the person will hold the umbrella to get rid of rain?

Solution:

We can find the angle at which the person will hold the umbrella to get rid of rain from the velocity triangle:

$$
\tan \theta=\frac{v_{\text {rain }}}{v_{\text {person }}}
$$

here, $v_{\text {rain }}$ is the velocity of the rain with respect to the ground, $v_{\text {person }}$ is the velocity of the person, $v_{\text {rain w.r.t.person }}$ is the velocity of the rain with respect to the person, θ is the angle at which the person will hold the umbrella to get rid of rain.

Then, we get:

$$
\theta=\arctan \left(\frac{v_{\text {rain }}}{v_{\text {person }}}\right)=\arctan \left(\frac{6 \frac{k m}{\mathrm{~h}}}{4 \frac{\mathrm{~km}}{\mathrm{~h}}}\right)=56^{\circ}
$$

Answer:

$\theta=56^{\circ}$.

