Answer on Question 78600, Physics, Mechanics, Relativity

Question:

The displacement (in meters) of a particle moving along x-axis is given by $x=$ $18 t+5 t^{2}$. Calculate:
a) instantaneous velocity at $t=2 \mathrm{~s}$
b) average velocity between $t=2 \mathrm{~s}$ and $t=3 \mathrm{~s}$
c) instantaneous acceleration.

Solution:

a) We can find the instantaneous velocity from the formula:

$$
v=\frac{d}{d t} x(t)=\frac{d}{d t}\left(18 t+5 t^{2}\right)=18+10 t
$$

The instantaneous velocity at $t=2 \mathrm{~s}$ is:

$$
v(t=2 s)=18+10 \cdot 2=38 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

b) Let's first find the total displacement of a particle between $t=2 \mathrm{~s}$ and $t=3 \mathrm{~s}$:

$$
x_{t o t a l}=\left.18 t\right|_{2} ^{3}+\left.5 t^{2}\right|_{2} ^{3}=18 \cdot(3-2)+5 \cdot(9-4)=43 m
$$

Average velocity is defined as total displacement divided by total time taken:

$$
v_{a v g}=\frac{x_{\text {total }}}{t_{\text {total }}}=\frac{43 \mathrm{~m}}{3 s-2 \mathrm{~s}}=43 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

c) We can find the instantaneous acceleration from the formula:

$$
a=\frac{d}{d t} v(t)=\frac{d}{d t}(18+10 t)=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Answer:

a) $v(t=2 \mathrm{~s})=38 \frac{\mathrm{~m}}{\mathrm{~s}}$.
b) $v_{a v g}=43 \frac{\mathrm{~m}}{\mathrm{~s}}$.
c) $a=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

