A uniaxial steel bar is initially 200 mm in length a square cross-section of 40 mm X 40 mm . The modulus of elasticity is 150 Gpa and Poisson's ratio is 0.3 , Determine the change in the dimensions of the bar when carrying a tensile load of 500 KN

Input Data:

Length: $L=2 m$;
Width: $=0.04 \mathrm{~m}$;
Modulus of elasticity (Young's): $E=150 * 10^{9} \mathrm{~Pa}$;
Poisson's ratio: $\mu=0.3$;
Tensile load $F=500 * 10^{3} \mathrm{~N}$;

Solution:

According to Hooke's law, the mechanical stress is:
$\sigma=\frac{\mathrm{F}}{\mathrm{S}}$
where S is the cross-sectional area of a square the bar:
$S=d^{2}$
as is known, the increment of the length of the I bar ΔL is proportional to the mechanical stress σ
$\Delta L=\frac{\sigma}{\mathrm{k}}$
the coefficient of proportionality \boldsymbol{k}, in turn, is
$k=\frac{\mathrm{E}}{\mathrm{L}}$
we obtain the length increment ΔL
$\Delta L=\frac{F L}{E d^{2}}$
$\Delta L=\frac{500 * 10^{3} * 2}{150 * 10^{9} * 16 * 10^{-4}}=4.2 * 10^{-3} \mathrm{~m}$
Poisson's ratio:
$\mu=-\frac{\Delta d * L}{d * \Delta L}$
hence we obtain a decrease in the thickness of the steel bar
$\Delta d=-\frac{\mu * d * \Delta L}{L}$
$\Delta d=-\frac{0.3 * 0.04 * 0.0042}{2}=-2.52 * 10^{-5} \mathrm{~m}$
Answer:

$$
\Delta L=4.2 \mathrm{~mm}
$$

$\Delta d=-0.0252 \mathrm{~mm}$
Answer provided by https://www.AssignmentExpert.com

