## Answer on Question\#78446-Physics - Electromagnetism

A circular iron ring has a mean circumference of 1.5 m and cross-sectional area of $0.01 \mathrm{~m}^{2}$. A saw cut of 4 mm wide is made in the ring. Calculate the magnetizing current required to produce a flux of 0.8 mWb in the gap if the ring is wound with a coil of 175 turns. Assume relative permeability of iron as 400 and leakage factor 1.25

## Solution:

The magnetic field produced by the coil is given by

$$
B=\mu_{0} \mu_{r} \frac{N I}{l},
$$

where $l$ - the length of the coil, with $N$ - number of turns, $\mu_{0}=4 \pi \cdot 10^{-7} \frac{\mathrm{~Wb}}{\mathrm{~A} \cdot \mathrm{~m}}$ - magnetic constant, $\mu_{r}$ - relative permeability of the core, $I$ - the magnetizing current.

The flux produced by such coil is equal to product of magnetic field and cross-sectional area $(A)$ of the coil:

$$
\Phi=B \cdot A=\mu_{0} \mu_{r} \frac{N I A}{l}
$$

Due to the leakage the resulting (useful) flux $\Phi_{u}$ would be smaller than this by leakage factor $\lambda$ :

$$
\Phi_{u}=\frac{\Phi}{\lambda}=\mu_{0} \mu_{r} \frac{N I A}{l \lambda}
$$

Thus we get

$$
I=\frac{\Phi_{u} l \lambda}{\mu_{0} \mu_{r} N A}
$$

It is given that $l=1.5 \mathrm{~m}, \mu_{r}=400, N=175, \Phi_{u}=0.8 \mathrm{mWb}, \lambda=1.25, A=0.01 \mathrm{~m}^{2}$, therefore

$$
I=\frac{\Phi_{u} l \lambda}{\mu_{0} \mu_{r} N A}=\frac{0.8 \mathrm{mWb} \cdot 1.5 \mathrm{~m} \cdot 1.25}{4 \pi \cdot 10^{-7} \frac{\mathrm{~Wb}}{\mathrm{~A} \cdot \mathrm{~m}} \cdot 400 \cdot 175 \cdot 0.01 \mathrm{~m}^{2}}=1.7 \mathrm{~A}
$$

Answer: 1.7 A .
Answer provided by https://www.AssignmentExpert.com

