Question \#78419, Physics / Molecular Physics | Thermodynamics

1. A golfer takes three putts to get the ball into the hole. The first put displaces the ball 3.66 m north, the second 1.83 m southeast, and the third 0.99 m southwest. What are
I. Magnitude, and
II. The direction of the displacement needed to get the ball into the hole on the first putt.

Solution

$$
\begin{gathered}
\boldsymbol{d}_{\mathbf{1}}=(0,3.66) \\
\boldsymbol{d}_{2}=(1.83 \cos 45,-1.83 \sin 45)=\left(1.83 \frac{\sqrt{2}}{2},-1.83 \frac{\sqrt{2}}{2}\right) \\
\boldsymbol{d}_{\mathbf{3}}=(-0.99 \cos 45,-0.99 \sin 45)=\left(-0.99 \frac{\sqrt{2}}{2},-0.99 \frac{\sqrt{2}}{2}\right) \\
\boldsymbol{d}=\boldsymbol{d}_{\mathbf{1}}+\boldsymbol{d}_{\mathbf{2}}+\boldsymbol{d}_{\mathbf{3}}=\left(1.83 \frac{\sqrt{2}}{2}-0.99 \frac{\sqrt{2}}{2}, 3.66-1.83 \frac{\sqrt{2}}{2}-0.99 \frac{\sqrt{2}}{2}\right)
\end{gathered}
$$

I.

$$
d=\sqrt{\left(1.83 \frac{\sqrt{2}}{2}-0.99 \frac{\sqrt{2}}{2}\right)^{2}+\left(3.66-1.83 \frac{\sqrt{2}}{2}-0.99 \frac{\sqrt{2}}{2}\right)^{2}}=1.77 \mathrm{~m}
$$

II.

$$
\theta=\tan ^{-1}\left(\frac{\left(3.66-1.83 \frac{\sqrt{2}}{2}-0.99 \frac{\sqrt{2}}{2}\right)}{\left(1.83 \frac{\sqrt{2}}{2}-0.99 \frac{\sqrt{2}}{2}\right)}\right)=70.4^{\circ} \text { north to east. }
$$

Answer provided by https://www.AssignmentExpert.com

