Answer on Question 78088, Physics, Astronomy, Astrophysics

Question:

A body has a weight 90 kg on the surface of the Earth, the mass of the Moon is $1 / 9$ that of Earth's mass and its radius is $1 / 2$ that of the Earth's radius. On the Moon the weight of the body is?

Solution:

As we know, the acceleration due to gravity on the surface of the Earth is given by the formula:

$$
g_{E}=\frac{G M_{E}}{R_{E}^{2}}
$$

here, G is the universal gravitational constant, M_{E} is the mass of the Earth, R_{E} is the radius of the Earth.

Then, from the definition of the weight, we can find the weight of the body on the Earth:

$$
W_{E}=m \frac{G M_{E}}{R_{E}^{2}}=m g_{E},(1)
$$

here, m is the mass of the body.
Also, we know from the condition of the question that $M_{M}=\frac{1}{9} M_{E}, R_{M}=\frac{1}{2} R_{E}$.
Then, the acceleration due to gravity on the surface of the Moon will be:

$$
g_{M}=\frac{G \frac{1}{9} M}{\left(\frac{1}{2} R\right)^{2}}=\frac{4}{9} \frac{G M}{R^{2}}=\frac{4}{9} g_{E}
$$

Then, the weight of the body on the Moon:

$$
W_{M}=m \frac{4}{9} g_{E}(2)
$$

Let's divide equation (2) by equation (1), we get:

$$
\frac{W_{M}}{W_{E}}=\frac{m \frac{4}{9} g_{E}}{m g_{E}}=\frac{4}{9}
$$

Then, we can find the weight of the body on the Moon:

$$
W_{M}=\frac{4}{9} \cdot W_{E}=\frac{4}{9} \cdot 90 \mathrm{~kg}=40 \mathrm{~kg} .
$$

Answer:

$$
W_{M}=40 \mathrm{~kg} .
$$

