

Answer on Question 78046, Physics, Atomic and Nuclear Physics

Question:

A juniper-wood plank measuring 0.46 ft by 1 ft by 14 ft is totally submerged in water.

- (a) What is its weight?
- (b) What is the buoyant force acting on it?
- (c) What is the size and the direction of the net force on it?

Solution:

(a) By the definition, the weight density is the weight per unit volume:

$$D = \frac{W}{V},$$

here, $D = 35 \text{ lb/ft}^3$ is the weight density of the juniper-wood plank [1], W is the weight of the juniper-wood plank and V is the volume of the juniper-wood plank.

Then, from this formula we can find the weight of the juniper-wood plank:

$$W = VD = 0.46 \text{ ft} \cdot 1 \text{ ft} \cdot 14 \text{ ft} \cdot 35 \frac{\text{lb}}{\text{ft}^3} = 225.4 \text{ lbs.}$$

(b) By the definition, the buoyant force is equal to the weight of the water displaced by the juniper-wood plank:

$$F_B = \rho_{\text{water}} V_{\text{plank}} g = D_{\text{water}} V_{\text{plank}},$$

here, F_B is the buoyant force, $D_{\text{water}} = 62.4 \text{ lb/ft}^4$ is the weight density of the water [2] and V_{plank} is the volume of the juniper-wood plank.

Then, we can calculate the buoyant force:

$$F_B = D_{\text{water}} V_{\text{plank}} = 0.46 \text{ ft} \cdot 1 \text{ ft} \cdot 14 \text{ ft} \cdot 62.4 \frac{\text{lb}}{\text{ft}^3} = 402 \text{ lbs.}$$

(c) There are two forces acting on the juniper-wood plank when it totally submerged into the water: the weight of the juniper-wood plank directed downward and the buoyant force directed upward. Let's assume the upwards as a positive direction. Then, we can find the size of the net force:

$$F_{\text{net}} = F_B - W = 402 \text{ lbs} - 225.4 \text{ lbs} = 176.6 \text{ lbs.}$$

The sign plus indicates that the net force directed upward.

Answer:

- (a) $W = 225.4 \text{ lbs.}$
- (b) $F_B = 402 \text{ lbs.}$
- (c) $F_{net} = 176.6 \text{ lbs, upward.}$

References:

1. https://www.engineeringtoolbox.com/wood-density-d_40.html
2. https://www.engineeringtoolbox.com/water-density-specific-weight-d_595.html

Answer provided by <https://www.AssignmentExpert.com>