Answer on Question \#77790, Physics / Optics

Question. Newton's rings are formed in reflected light of wavelength $6000 \AA$ with a liquid between the plane and curved surfaces. The diameter of 7 th dark ring is 0.34 cm and the radius of curvature of curved surface is 100 cm . Calculate the refractive index of liquid.

Given. $\lambda=6000 \AA=6000 \cdot 10^{-10} \mathrm{~m} ; m=7 ; d_{m}=0.34 \mathrm{~cm}=0.34 \cdot 10^{-2} \mathrm{~m} ; R=100 \mathrm{~cm}=1 \mathrm{~m} ; \beta=0$.
Find. $n-$?

Solution.

For the dark ring system:

$$
2 d n \cos \beta+\frac{\lambda}{2}=(2 m+1) \lambda \rightarrow 2 d n \boldsymbol{\operatorname { c o s }} \beta=m \lambda \rightarrow 2 d n=m \lambda \rightarrow n=\frac{m \lambda}{2 d}
$$

From the figure

$$
\begin{gathered}
R^{2}=(R-d)^{2}+r^{2} \\
R^{2}=R^{2}-2 R d+d^{2}+r^{2}
\end{gathered}
$$

Because d is very small, we have that

$$
d=\frac{r^{2}}{2 R}
$$

Finally

$$
n=\frac{4 R m \lambda}{d_{m}^{2}}=\frac{4 \cdot 1 \cdot 7 \cdot \mathbf{6 0 0 0} \cdot \mathbf{1 0}^{-\mathbf{1 0}}}{\left(\mathbf{0 . 3 4 \cdot 1 \mathbf { 1 0 } ^ { - 2 }) ^ { 2 }}\right.}=1.45
$$

Answer. $n=1.45$.
Answer provided by https://www.AssignmentExpert.com

