Answer on Question \#77789, Physics / Optics

Question. Two waves of the same frequency and constant phase difference have intensities in the ratio $36: 4$. These waves are superposed and interference fringe pattern is obtained. Calculate the ratio of the maximum to minimum intensity.
Given. $\frac{I_{1}}{I_{2}}=\frac{36}{4}$.
Find. $\frac{I_{\text {max }}}{I_{\text {min }}}-$?

Solution.

So,

$$
\begin{gathered}
\frac{\boldsymbol{I}_{1}}{\boldsymbol{I}_{2}}=\frac{\left(a_{1}\right)^{2}}{\left(a_{2}\right)^{2}}=\left(\frac{a_{1}}{a_{2}}\right)^{2}=\frac{\mathbf{3 6}}{\mathbf{4}}=\left(\frac{6}{2}\right)^{2} \\
\frac{a_{1}}{a_{2}}=\frac{6}{2} \\
\frac{\boldsymbol{I}_{\max }}{\boldsymbol{I}_{\min }}=\frac{\left(a_{1}+a_{2}\right)^{2}}{\left(a_{2}-a_{2}\right)^{2}}=\frac{(6+2)^{2}}{(6-2)^{2}}=\frac{64}{16} \text { or } \frac{4}{1}
\end{gathered}
$$

Answer. $\frac{I_{\text {max }}}{I_{\text {min }}}=\frac{64}{16}$.
Answer provided by https://www.AssignmentExpert.com

