Two objects exert a force of 4.2 N on each other. The distance between the objects is 0.36 m . The charge on one object is $2.8 \times 10^{\wedge}-9 \mathrm{C}$. What is the charge on the second object?

Input Data:

Distance: $r=0.36 \mathrm{~m}$
Force: $F=4.2 \mathrm{~N}$
Charge $_{1}: q_{1}=2.8 * 10^{-9} \mathrm{C}$
$k=9 * 10^{9} \frac{N * m^{2}}{C^{2}}$
Since the medium is not specified, - the permittivity is indicated for air $\varepsilon=1$

Solution:

According to the law of the coulomb, the interaction force between charges is:

$$
F=k \frac{q_{1} * q_{2}}{\varepsilon r^{2}}
$$

Hence we obtain the second charge:
$q_{2}=F \frac{\varepsilon r^{2}}{k q_{1}}=0.0216 \mathrm{C}$
Answer:
To interact with such a force under these conditions, the second object must have a charge of 0.0216 C

Answer provided by https://www.AssignmentExpert.com

