Question \#77543, Physics / Classical Mechanics
the length of the ropes on a playground swing is 2.0 m . a) what is the maximum speed attainable on the swing if the maximum value of theta is 60 degrees?. b) if a 50 kg person is playing the swing, what is the maximum kinetic energy he/she can reach?

Solution

a) The swing has the maximum speed at the equilibrium point.

Using the law of conservation of the energy,
$E_{k}=E_{G P}$,
Where E_{k} is the swing's kinetic energy at the equilibrium point,
E_{GP} is the swing's gravitational potential energy at the upper point.
Plugging the values of the energies,
$\frac{m v_{\text {max }}^{2}}{2}=m g h_{\text {max }}$
Hence $v_{\text {max }}=\sqrt{2 g h_{\text {max }}}$
The height of the swing at the upper position above the equilibrium position is
$h_{\text {max }}=l(1-\cos \theta)=2.0 \times\left(1-\cos 60^{\circ}\right)=1.0$
$v_{\max }=\sqrt{2 \times 9.81 \times 1.0}=4.4 \mathrm{~m} / \mathrm{s}$
b) $E_{k_{-} \max }=\frac{m v_{\text {max }}^{2}}{2}=\frac{50 \times 4.4^{2}}{2}=484 \mathrm{~J}$

Answer: a) $4.4 \mathrm{~m} / \mathrm{s}$; b) 484 J.

