Answer on Question \#77502, Physics / Electric Circuits

Question. A filament lamp is placed with a resistor of 150 ohms as shown in the circuit below and then connected to a cell of potential difference 12 volts. The current leaving the cell is 0.1 A . Calculate the resistance of the filament lamp.

Given. $R=150 \Omega ; U=12 \mathrm{~V} ; I=0.1 \mathrm{~A}$.
Find. $r-$?

Solution.

Assume that the internal resistance of the cell $R_{\text {in }}=0$.
In case of parallel connection
We have

$$
\begin{gathered}
\frac{1}{R_{p}}=\frac{1}{R}+\frac{1}{r} \rightarrow \quad R_{p}=\frac{R \cdot r}{R+r} \\
I=\frac{U}{R_{p}}=\frac{U(R+r)}{R \cdot r} \rightarrow I \cdot R \cdot r=U(R+r) \rightarrow I \cdot R \cdot r-U \cdot r=U \cdot R \rightarrow \\
r(I \cdot R-U)=U \cdot R \rightarrow r=\frac{U \cdot R}{I \cdot R-U}=\frac{12 \cdot 150}{0.1 \cdot 150-12}=600 \Omega
\end{gathered}
$$

In case of serial connection
We have

$$
\begin{gathered}
R_{S}=R+r \\
I=\frac{U}{R+r} \rightarrow I \cdot R+I \cdot r=U \rightarrow r=\frac{U-I \cdot R}{I}=\frac{12-0.1 \cdot 150}{0.1}=-30 \Omega
\end{gathered}
$$

The solution has no meaning.

So, we have a parallel connection.
Answer. $r=\frac{U \cdot R}{I \cdot R-U}=600 \Omega$.
Answer provided by https://www.AssignmentExpert.com

