

Answer on Question #77020, Physics / Electromagnetism

Question. A magnet that is moving towards a $N=20$ turn coil of resistance $R=12 \Omega$ at $v=0.5 \text{ m/s}$ results in a current of $I=0.25 \text{ A}$ produced in the coil. What is the force exerted by the coil on the magnet?

Solution.

Assume that $z \ll r$ (z is a distance between the magnet and the coil). We have

$$F = IB_r l = IB_r 2\pi r ,$$

where

$$B_r = \frac{r}{2} \frac{\Delta B_z}{\Delta z}$$

So,

$$E = IR = N \frac{\Delta \Phi}{\Delta t} = N \frac{\Delta(B_z S)}{\Delta t} = NS \frac{\Delta B_z}{\Delta t} = NS \frac{\Delta B_z}{\Delta z} \frac{\Delta z}{\Delta t} = NS \frac{\Delta B_z}{\Delta z} v \Rightarrow \frac{\Delta B_z}{\Delta z} = \frac{IR}{NSv}$$

We get

$$F = IB_r 2\pi r = I \frac{r}{2} \frac{IR}{NSv} 2\pi r = I \frac{r}{2} \frac{IR}{N\pi r^2 v} 2\pi r = \frac{I^2 R}{Nv}$$

Finally

$$F = \frac{I^2 R}{Nv} = \frac{0.25^2 \cdot 12}{20 \cdot 0.5} = 0.075N$$

$$\text{Answer. } F = \frac{I^2 R}{Nv} = 0.075N$$

Answer provided by <https://www.AssignmentExpert.com>