Answer on Question \#76743-Physics / Optics

Question:

A 1200 kg Toyota Echo is accelerating down a hill. The hill is 150 m long and the total distance in elevation of the hill is 15 m . The car accelerates from a speed of $2.0 \mathrm{~m} / \mathrm{s}$ at the top to an unknown velocity at the bottom in 11 s . The power of the car is 9.6 kW , while the average retarding force of friction is 600 N . Find the speed of the car at the bottom of the hill.

Solution:

We have:
$m=1200 \mathrm{~kg}$
$\mathrm{L}=150 \mathrm{~m}$
$\mathrm{h}=15 \mathrm{~m}$
$\mathrm{v}_{1}=2 \mathrm{~m} / \mathrm{s}$
$\mathrm{t}=11 \mathrm{~s}$
$\mathrm{W}=9.6 \mathrm{~kW}=9600 \mathrm{~W}$
$F_{r}=600 \mathrm{~N}$
$\mathrm{g}=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
The kinetic energy at the top of the hill:

$$
E_{1}=\frac{m v_{1}^{2}}{2}
$$

Let v_{2} is the speed and E_{2} is the kinetic energy of the car at the bottom of the hill, then

$$
E_{2}=\frac{m v_{2}^{2}}{2}
$$

but the kinetic energy was changed:
a. the kinetic energy is increased on the value of the potential energy

$$
\Delta E_{h}=m g h
$$

b. the energy is increased by the power of the car

$$
\Delta E_{W}=W t
$$

c. the energy is decreased by the retarding force

$$
\Delta E_{r}=L F_{r}
$$

So the kinetic energy at the bottom of the hill:

$$
E_{2}=E_{1}+\Delta E_{h}+\Delta E_{W}-\Delta E_{r}
$$

or

$$
\frac{m v_{2}^{2}}{2}=\frac{m v_{1}^{2}}{2}+m g h+W t-L F_{r}
$$

Then

$$
\begin{gathered}
v_{2}=\sqrt{v_{1}^{2}+2 g h+\frac{2 W t}{m}-\frac{2 L F_{r}}{m}} \\
\approx \sqrt{2.0^{2}+2 \cdot 9.8 \cdot 15+\frac{2 \cdot 9600 \cdot 11}{1200}-\frac{2 \cdot 150 \cdot 600}{1200}} \approx 18 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Answer: the speed of the car at the bottom of the hill $v_{2} \approx 18 \mathrm{~m} / \mathrm{s}$
Answer provided by https://www.AssignmentExpert.com

