An object was launched with a velocity of $\mathbf{2 0} \mathbf{~ m s}-1$ at an angle of 45° to the vertical. At the top of its trajectory the object broke into two equal pieces. One piece fell vertically downwards. Where would the other piece fall? (Take $\mathrm{g}=\mathbf{1 0} \mathbf{~ m s}-2$)

At the top of its trajectory the object has velocity:

$$
\begin{gathered}
v_{y}=0 \\
v_{x}=v_{x 0}=v_{0} \cos (\alpha)
\end{gathered}
$$

Height of the object's trajectory:

$$
H=\frac{v_{y 0}^{2}}{2 g}=\frac{\left(v_{0} \sin (\alpha)\right)^{2}}{2 g}
$$

Object will fall down (and go up) during time:

$$
H=\frac{g t^{2}}{2} \rightarrow t=\sqrt{\frac{2 H}{g}}
$$

During this time, while object is go up, it will move at distance:

$$
x_{1}=v_{x 0} t=v_{0} \cos (\alpha) \sqrt{\frac{2 H}{g}}
$$

At the top of trajectory the object broke into two pieces. If the first piece fell vertically downwards, the second piece will move in x directions with velocity:

$$
v_{x 2}=2 v_{x}=2 v_{0} \cos (\alpha)
$$

While object is fall down, it will move at distance:

$$
x_{2}=v_{x 2} t=2 v_{0} \cos (\alpha) \sqrt{\frac{2 H}{g}}
$$

And total distance:

$$
\begin{gathered}
x=x_{1}+x_{2}=v_{0} \cos (\alpha) \sqrt{\frac{2 H}{g}}+2 v_{0} \cos (\alpha) \sqrt{\frac{2 H}{g}}=3 v_{0} \cos (\alpha) \sqrt{\frac{2 H}{g}}=3 v_{0} \cos (\alpha) \sqrt{\frac{2 \frac{\left(v_{0} \sin (\alpha)\right)^{2}}{2 g}}{g}} \\
x=\frac{3 v_{0}^{2} \cos (\alpha) \sin (\alpha)}{g} \\
x=\frac{3 *(20 \mathrm{~m} / \mathrm{s})^{2} * \cos (45) \sin (45)}{10 \mathrm{~m} / \mathrm{s}^{2}}=60 \mathrm{~m}
\end{gathered}
$$

Answer: $x=60 \mathrm{~m}$

