Answer on Question \# 76349, Physics / Mechanics | Relativity

Question. A box of mass 0.8 kg slide at speed of $10 \mathrm{~m} / \mathrm{s}$ across a smooth level floor before it encounter a rough patch of length 3.0 m The friction force on the box due to this part of the floor is 70 N . What is the speed of box when it leave this rough surface? What length of the rough surface would being the box completly to rest? Given.
$m=0.8 \mathrm{~kg} ; v=10 \mathrm{~m} / \mathrm{s} ; F=70 \mathrm{~N} ; l=3 \mathrm{~m}$.
Find. $u, s-$?

Solution.

The kinetic energy of the box is

$$
E=\frac{m v^{2}}{2}=\frac{0.8 \cdot 10^{2}}{2}=40 \mathrm{~J}
$$

The work done by friction is

$$
A=F l=70 \cdot 3=210 \mathrm{~J}
$$

So, in this case, the box will not overcome 3 meters of the path and stop faster.
The box will stop at the point

$$
E=F s \rightarrow s=\frac{E}{F}=\frac{40}{70}=0.57 \mathrm{~m}
$$

Similar results can be obtained as follows

$$
\begin{gathered}
a=\frac{F}{m}=\frac{70}{0.8}=87.5 \mathrm{~m} / \mathrm{s}^{2} \\
u=v-a t \rightarrow t=\frac{(v-u)}{a}=\frac{10-0}{87.5}=0.11 \mathrm{~s}
\end{gathered}
$$

Finally

$$
s=v t-\frac{a t^{2}}{2}=10 \cdot 0.11-\frac{87.5 \cdot 0.11^{2}}{2}=0.57 \mathrm{~m}
$$

Answer. The box will not overcome 3 meters of the path and stop faster; $s=0.57 \mathrm{~m}$.
Answer provided by https://www.AssignmentExpert.com

