Answer on Question \#76338-Physics-Other

In a linear chain of two different types of atoms of masses m and M the displacement of the two atoms in the $k=0$ optical branch are u and v respectively. Show that $u=-m v M$

Solution

For a diatomic chain (of two different types of atoms of masses m and M that interact with same force constant C):

$$
\frac{u}{v}=\frac{C\left(1+e^{-i k a}\right)}{2 C-M \omega^{2}}
$$

In the k=0 optical branch:

$$
\omega^{2}=2 C\left(\frac{1}{m}+\frac{1}{M}\right)
$$

Thus,

$$
\begin{gathered}
\frac{u}{v}=\frac{C\left(1+e^{-i(0) a}\right)}{2 C-M \omega^{2}}=\frac{C(1+1)}{2 C-M \omega^{2}}=\frac{C}{C-\frac{1}{2} M \omega^{2}} \\
\frac{u}{v}=\frac{C}{C-\frac{1}{2} M 2 C\left(\frac{1}{m}+\frac{1}{M}\right)}=\frac{1}{1-\frac{M}{m}+1}=-\frac{m}{M} . \\
u=-\frac{m}{M} v .
\end{gathered}
$$

Answer provided by https://www.AssignmentExpert.com

