Answer on Question 76294, Physics, Other

Question:

Two spherical objects have masses of 200 kg and 500 kg . Their centers are separated by a distance of 25 m . Find the gravitational attraction between them.

Solution:

We can find the gravitational attraction between the spherical objects from the Newton's universal law of gravitation:

$$
F_{\text {attr }}=G \frac{m_{1} m_{2}}{r^{2}},
$$

here, $G=6.67 \cdot 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$ is the gravitational constant; m_{1}, m_{2} are the masses of the objects, respectively; r is the distance between the centers of the objects.

Then, we get:

$$
F_{a t t r}=G \frac{m_{1} m_{2}}{r^{2}}=6.67 \cdot 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} \cdot \frac{200 \mathrm{~kg} \cdot 500 \mathrm{~kg}}{(25 \mathrm{~m})^{2}}=1.067 \cdot 10^{-8} \mathrm{~N}
$$

Answer:

$$
F_{\text {attr }}=1.067 \cdot 10^{-8} \mathrm{~N}
$$

Answer provided by https://www.AssignmentExpert.com

