Answer on Question \#76291, Physics Mechanics Relativity

A ball is thrown vertically upward from the foot of a tower. It crosses the top of the tower twice after an interval of 4 s and reaches the foot of the tower 8 s after it was thrown what is the height of the tower?

Solution.

Height of the tower:
$h=v_{0} \cdot t-\frac{g \cdot t^{2}}{2}$
$h=v_{0} \cdot(t+\Delta t)-\frac{g \cdot(t+\Delta t)^{2}}{2}$,
where $\Delta t=4 s$
$v_{0} \cdot t-\frac{g \cdot t^{2}}{2}=v_{0} \cdot(t+\Delta t)-\frac{g \cdot(t+\Delta t)^{2}}{2}$
From here
$t=\frac{v_{0}-\frac{g \cdot \Delta t}{2}}{g}$
At the top $v=v_{0}-g \frac{T}{2}$,
Where T $=8 \mathrm{~s}$
$0=v_{0}-4 g$
$v_{0}=40 \frac{\mathrm{~m}}{\mathrm{~s}}$
$t=\frac{v_{0}-\frac{g \cdot \Delta t}{2}}{g}=\frac{40-\frac{10 \cdot 4}{2}}{10}=2 \mathrm{~s}$
$h=v_{0} \cdot t-\frac{g \cdot t^{2}}{2}=40 \cdot 2-\frac{10 \cdot(2)^{2}}{2}=60 \mathrm{~m}$
Answer: $h=60 \mathrm{~m}$

