Answer on Question \#76288, Physics Mechanics Relativity

A ball P of mass 2 kg undergoes an elastic collision with another ball Q at rest. After collision, ball P continues to move in its original direction with a speed one fourth of its original speed. What is the mass of ball Q ?

Solution.

From the law of conservation of momentum
$\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} v_{2}=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}$
$m_{1}\left(v_{1}-v_{1}^{\prime}\right)=m_{2}\left(v_{2}^{\prime}-v_{2}\right)$
From the law of conservation of energy
$\frac{\mathrm{m}_{1} \mathrm{v}_{1}^{2}}{2}+\frac{\mathrm{m}_{2} v_{2}^{2}}{2}=\frac{m_{1} v_{1}^{\prime 2}}{2}+\frac{m_{2} v_{2}^{\prime 2}}{2}$
or $m_{1}\left(v_{1}^{2}-v_{1}^{\prime 2}\right)=m_{2}\left(v_{2}^{\prime 2}-v_{2}^{2}\right)$
or $m_{1}\left(v_{1}-v_{1}^{\prime}\right)\left(v_{1}+v_{1}^{\prime}\right)=m_{2}\left(v_{2}^{\prime}-v_{2}\right)\left(v_{2}^{\prime}+v_{2}\right)$
Take advantage of the law of conservation of momentum
$v_{1}+v_{1}^{\prime}=v_{2}^{\prime}+v_{2}$
$v_{1}+\frac{v_{1}}{4}=v_{2}^{\prime}+0$
where $v_{1}^{\prime}=\frac{v_{1}}{4}, v_{2}=0$
$v_{2}^{\prime}=\frac{5 v_{1}}{4}$
Substitute the values obtained in the law of conservation of energy
$\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} v_{2}=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}$
$\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \cdot 0=m_{1} \frac{v_{1}}{4}+m_{2} \frac{5 \cdot v_{1}}{4}$
$\frac{3 \cdot m_{1} v_{1}}{4}=m_{2} \frac{5 \cdot v_{1}}{4}$
$\mathrm{m}_{2}=\frac{3 \mathrm{~m}_{1}}{5}=\frac{3 \cdot 2 \mathrm{~kg}}{5}=1.2 \mathrm{~kg}$
Answer: The mass of ball Q is 1.2 kg

