Answer on Question \#76287, Physics / Mechanics | Relativity

A neutron of mass $1.67 \times 10^{\wedge}-27 \mathrm{~kg}$ moving with a velocity $1.2 \times 10^{\wedge} 7 \mathrm{~ms}^{\wedge}-1$ collides head-on with a deuteron of mass $3.34 \times 10^{\wedge}-27 \mathrm{~kg}$ initially at rest. If the collision were perfectly elastic, what would be the speed of deuteron after the collision?

Solution

$m_{n}=1.67 \cdot 10^{-27} \mathrm{~kg}$
$\mathrm{v}_{1 \mathrm{n}}=1.2 \cdot 10^{7} \mathrm{~m} / \mathrm{s}$
$m_{d}=3.34 \cdot 10^{-27} \mathrm{~kg}$
$v_{1 d}=0$
$v_{2 d}-$?
To answer this question we should use two laws:

1) The law of conservation of momentum:

$$
m_{n} \times v_{1 n}+m_{d} \times v_{1 d}=m_{n} \times v_{2 n}+m_{d} \times v_{2 d}
$$

as $v_{1 d}=0$ (deuteron was initially at rest.)
then $m_{d} \times v_{1 d}=0$
and the equation of the law of conservation of momentum is:

$$
m_{n} \times v_{1 n}=m_{n} \times v_{2 n}+m_{d} \times v_{2 d}
$$

2) Energy conservation law:

$$
\frac{m_{n} \times v_{1 n}^{2}}{2}+\frac{m_{d} \times v_{1 d}^{2}}{2}=\frac{m_{n} \times v_{2 n}^{2}}{2}+\frac{m_{d} \times v_{2 d}^{2}}{2}
$$

as $v_{1 d}=0$, then $m_{d} \times v_{1 d}^{2}=0$
and the equation of energy conservation law is:

$$
\frac{m_{n} \times v_{1 n}^{2}}{2}=\frac{m_{n} \times v_{2 n}^{2}}{2}+\frac{m_{d} \times v_{2 d}^{2}}{2}
$$

Solve the system of two equations:

$$
\begin{aligned}
& \left\{\begin{array}{l}
1.67 \times 10^{-27} \times 1.2 \times 10^{7}=1.67 \times 10^{-27} \times v_{2 n}+3.34 \times 10^{-27} \times v_{2 d} \\
\frac{1.67 \times 10^{-27} \times 1.2 \times 10^{7}}{2}=\frac{1.67 \times 10^{-27} \times v_{2 n}}{2}+\frac{3.34 \times 10^{-27} \times v_{2 d}}{2}
\end{array}\right. \\
& \left\{\begin{array}{l}
1.2 \times 10^{7}=v_{2 n}+2 \times v_{2 d} \\
\left(1.2 \times 10^{7}\right)^{2}=v_{2 n}^{2}+2 \times v_{2 d}^{2}
\end{array}\right. \\
& \left\{\begin{array}{l}
v_{2 n}=1.2 \times 10^{7}-2 \times v_{2 d} \\
\left(1.2 \times 10^{7}\right)^{2}=\left(1.2 \times 10^{7}-2 \times v_{2 d}\right)^{2}+2 \times v_{2 d}
\end{array}\right. \\
& \left\{\begin{array}{l}
v_{2 n}=1.2 \times 10^{7}-2 \times v_{2 d} \\
\left(1.2 \times 10^{7}\right)^{2}=\left(1.2 \times 10^{7}\right)^{2}-2 \times 2 \times 1.2 \times 10^{7} \times v_{2 d}^{2}+4 \times v_{2 d}^{2}+2 \times v_{2 d}
\end{array}\right. \\
& \left\{\begin{array}{l}
v_{2 n}=1.2 \times 10^{7}-2 \times v_{2 d} \\
6 \times v_{2 d}^{2}=2 \times 2 \times 1.2 \times 10^{7} \times v_{2 d}
\end{array}\right. \\
& \left\{\begin{array}{l}
v_{2 n}=1.2 \times 10^{7}-2 \times v_{2 d} \\
v_{2 d}=8 \times 10^{6}
\end{array}\right. \\
& \left\{\begin{array}{l}
v_{2 n}=-4 \times 10^{6} \\
v_{2 d}=8 \times 10^{6}
\end{array}\right. \\
& \mathrm{v}_{2 d}=8 \times 10^{6} \mathrm{~m} / \mathrm{s} \\
& v_{2 n}=-4 \times 10^{6} \mathrm{~m} / \mathrm{s} \text { (minus before value of speed means that a neutron changed its } \\
& \text { direction on the opposite after perfectly elastic collision). }
\end{aligned}
$$

Answer: $8 \times 10^{6} \mathrm{~m} / \mathrm{s}$

