Answer on Question 76173, Physics, Other

Question:

A 5 cm tall object is placed 12 cm in front of a convex mirror and produces an image 7 cm behind the mirror. Where is the focal point located?

Solution:

We can find the focal point distance from the mirror equation:

$$
\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}
$$

here, $d_{o}=12 \mathrm{~cm}$ is the object distance, $d_{i}=-7 \mathrm{~cm}$ is the image distance (the image distances for convex mirrors are always negative) and f is the focal point distance.

Then, from this formula we can find the focal point distance:

$$
\begin{gathered}
\frac{1}{f}=\frac{1}{d_{o}}+\frac{1}{-d_{i}} \\
f=\frac{1}{\frac{1}{d_{o}}-\frac{1}{d_{i}}}=\frac{1}{\frac{1}{12 \mathrm{~cm}}-\frac{1}{7 \mathrm{~cm}}}=-16.8 \mathrm{~cm}
\end{gathered}
$$

Also, from the magnification equation we can find the image height:

$$
\frac{h_{i}}{h_{o}}=-\frac{d_{i}}{d_{o}}
$$

here, $h_{o}=5 \mathrm{~cm}$ is the object height, h_{i} is the image height.
Then, we get:

$$
h_{i}=-h_{o} \frac{d_{i}}{d_{o}}=-5 \mathrm{~cm} \cdot \frac{(-7 \mathrm{~cm})}{12 \mathrm{~cm}}=2.9 \mathrm{~cm}
$$

Answer:

$f=-16.8 \mathrm{~cm}, h_{i}=2.9 \mathrm{~cm}$.
Answer provided by https://www.AssignmentExpert.com

