Answer on Question \#76053, Physics Classical Mechanics

A block of mass $m=0.1 \mathrm{~kg}$ is released from a height of 4 m on a curved smooth surface, path $\mathrm{AB}(1 \mathrm{~m})$ is smooth and path $\mathrm{BC}(2 \mathrm{~m})$ offers coefficient of friction 0.1. If the impact of block with vertical wall at C be perfectly elastic, the total distance covered by the block on the horizontal surface before coming to rest will be \qquad ... $\left[g=10 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right]$

Ans:59m

Solution

It is the total path on the rough surface.

$$
n=\frac{40}{2}=20
$$

So, it travels through BC 20 times. But the last time it cannot move from B to A. Thus, it travels through AB 201=19 times.

The total distance covered by the block on the horizontal surface before coming to rest will be

$$
S=20(2)+19(1)=59 \mathrm{~m} .
$$

Answer provided by https://www.AssignmentExpert.com

