

A grinding wheel starts from rest and has a constant angular acceleration of 5 rad/sec². At t = 6 seconds, find the centripetal and tangential accelerations of a point 75 mm from the axis. Determine the angular speed at 6 seconds, and the angle the wheel has turned through.

First of all let's find an angular speed:

$$\omega = \beta t$$

$$\omega = 5 \text{ rad/s}^2 * 6 \text{ s} = 30 \text{ rad/s}$$

Where β - angular acceleration

Centripetal acceleration:

$$a_n = \omega^2 R = (30 \text{ rad/s})^2 * 0.075 \text{ m} = 67.5 \text{ m/s}^2$$

Tangential acceleration:

$$a_t = \beta R$$

$$a_t = 5 \text{ rad/s}^2 * 0.075 \text{ m} = 0.375 \text{ m/s}^2$$

And finally, angle the wheel has turns trough:

$$\varphi = \frac{\beta t^2}{2}$$

$$\varphi = \frac{5 \text{ rad/s}^2 * (6 \text{ s})^2}{2} = 90 \text{ rad}$$

Answer: $\varphi = 90 \text{ rad}$, $\omega = 30 \text{ rad/s}$, $a_n = 67.5 \text{ m/s}^2$, $a_t = 0.375 \text{ m/s}^2$