Answer on Question \#75621, Physics / Electromagnetism

Question A wheel having mass m has charge $+q$ and $-q$ on diametrically opposite points. It remains in equilibrium on a rough inclined plane in the presence of vertical electric field E . The value of E is .
Ans: mg/2q
Solution We can consider this wheel as dipole

$$
p=q d
$$

where d is diameter of the wheel. The torque create by field is

$$
\tau=\vec{p} \times E=p E \sin \alpha=q d E \sin \alpha
$$

where α is angle of inclination of the plane. It is written for point where wheel touches the plane. We can also compute torque of the gravitational force:

$$
\tau_{g}=F \times r=m g \cdot d / 2 \cdot \sin \alpha
$$

Here we assumed that gravitational force is applied to the center of the wheel. Wheel is balanced, hence these torques are equal, from this we obtain

$$
\begin{aligned}
\tau & =\tau_{g} \\
q d E \sin \alpha & =m g \cdot d / 2 \cdot \sin \alpha \\
E & =\frac{m g}{2 q}
\end{aligned}
$$

