

Answer on Question #74434, Physics / Optics

Question. A ray of light is incident at angle 60° on one face of a prism which has an apex angle of 30° . The ray emerging out of the prism make an angel of 30° with the incident ray. The refractive index of the material of prism is

- (1) $\sqrt{2}$;
- (2) $\sqrt{3}$;
- (3) 1.5;
- (4) 1.6.

Given. $\theta = 60^\circ$; $A = 30^\circ$; $\delta = 30^\circ$.

Find. n —?

Solution.

For a prism

$$\delta = \theta + \gamma - A,$$

where

$$\sin \gamma = n \cdot \sin \left(A - \arcsin \left(\frac{\sin \theta}{n} \right) \right)$$

So,

$$30^\circ = 60^\circ + \gamma - 30^\circ \rightarrow \gamma = 0.$$

$$\sin 0^\circ = n \cdot \sin \left(A - \arcsin \left(\frac{\sin 60^\circ}{n} \right) \right) \rightarrow 0 = \sin \left(A - \arcsin \left(\frac{\sin 60^\circ}{n} \right) \right) \rightarrow$$

$$A - \arcsin \left(\frac{\sin 60^\circ}{n} \right) = 0 \rightarrow \arcsin \left(\frac{\sin 60^\circ}{n} \right) = 30^\circ \rightarrow$$

$$\frac{\sin 60^\circ}{n} = \sin 30^\circ \rightarrow \frac{\sqrt{3}}{2n} = \frac{1}{2} \rightarrow n = \sqrt{3}$$

Answer. $n = \sqrt{3}$.

Answer provided by <https://www.AssignmentExpert.com>