Answer on Question \#74372-Physics-Classical Mechanics

A batter hits a baseball so that it leaves the bat with an initial speed $37 \mathrm{~m} / \mathrm{s}$ at an angle of 53. Find the position of the ball and the magnitude and direction of its velocity after 2 seconds. Treat the baseball as a projectile.

Solution

1) The position of the ball:

$$
\begin{gathered}
x=v t \cos \theta=37 \cos 53(2)=44.5 \mathrm{~m} \\
y=v t \sin \theta-\frac{g t^{2}}{2}=37 \sin 53(2)-\frac{9.8}{2}(2)^{2}=39.5 \mathrm{~m}
\end{gathered}
$$

2)

$$
\begin{gathered}
v_{x}=v \cos \theta=37 \cos 53=22.27 \frac{\mathrm{~m}}{\mathrm{~s}} . \\
v_{y}=v \sin \theta-g t=37 \sin 53-9.8(2)=-14.01 \mathrm{~m}
\end{gathered}
$$

The magnitude is

$$
v=\sqrt{\left(v_{x}\right)^{2}+\left(v_{y}\right)^{2}}=\sqrt{(22.27)^{2}+(-14.01)^{2}}=26.3 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The direction is

$$
\alpha=\tan ^{-1} \frac{14.01}{22.27}=32.2^{\circ} \text { below the horizontal axis. }
$$

Answer provided by https://www.AssignmentExpert.com

