Answer on Question 74312, Physics, Other

Question:

A car's bumper is designed to withstand a $4 \mathrm{~km} / \mathrm{h}$ collision with an immovable object without damaging the body of the car. The bumper cushions the shock by absorbing the force over a distance. Calculate the magnitude of the average force in a bumper that collapses 0.205 m while bringing a 875 kg car to rest from an initial speed of $1.2 \mathrm{~m} / \mathrm{s}$, in Newtons.

Solution:

We can find the average force in a bumper from the work-energy theorem (the change in the kinetic energy of the car is equal to the work done by the force F over a distance s to stop the car):

$$
\begin{gathered}
W=K E_{f}-K E_{i}=F s \\
F=\frac{\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=F s}{}=\frac{\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}}{S}=\frac{\frac{1}{2} \cdot 875 \mathrm{~kg} \cdot\left(0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}-\frac{1}{2} \cdot 875 \mathrm{~kg} \cdot\left(1.2 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{0.205 \mathrm{~m}}= \\
=-3073 \mathrm{~N} .
\end{gathered}
$$

The sign minus indicates that the car slows down. The magnitude of the average force in a bumper is 3073 N .

Answer:

$F=3073 N$.

