Answer on Question 74260, Physics, Other

Question:

A sinusoidal wave is described by $y(x, t)=0.3 \sin (5.95 t-4.20 x) \mathrm{cm}$, where x is the position along the wave propagation. Determine the amplitude, wave number, wavelength, frequency and velocity of the wave.

Solution:

The general equation describing a sinusoidal wave looks like:

$$
y(x, t)=A \sin (\omega t-k x)
$$

here, A is the amplitude of the wave, ω is the angular frequency of the wave, k is the wave number.
a) As we can see from the equation above, the amplitude of the wave is $A=$ 0.003 m .
b) The wave number is $k=4.20 \frac{\mathrm{rad}}{\mathrm{cm}}=420 \frac{\mathrm{rad}}{\mathrm{m}}$.
c) We can find the wavelength from the formula:

$$
k=\frac{2 \pi}{\lambda}
$$

here, λ is the wavelength of the wave.
Then, we get:

$$
\lambda=\frac{2 \pi}{k}=\frac{2 \pi}{420 \frac{\mathrm{rad}}{\mathrm{~m}}}=0.015 \mathrm{~m}
$$

d) We can find frequency of the wave from the formula:

$$
\omega=2 \pi f
$$

here, ω is the angular frequency of the wave, f is the frequency of the wave.
Then, we get:

$$
f=\frac{\omega}{2 \pi}=\frac{5.95 \frac{\mathrm{rad}}{s}}{2 \pi}=0.95 \mathrm{~Hz}
$$

e) We can find the velocity of the wave from the wave speed formula:

$$
v=f \lambda=0.95 \mathrm{~Hz} \cdot 0.015 \mathrm{~m}=0.014 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer:

a) $A=0.003 \mathrm{~m}$.
b) $k=420 \frac{\mathrm{rad}}{\mathrm{m}}$.
c) $\lambda=0.015 \mathrm{~m}$.
d) $f=0.95 \mathrm{~Hz}$.
e) $v=0.014 \frac{\mathrm{~m}}{\mathrm{~s}}$.

Answer provided by https://www.AssignmentExpert.com

