Answer on Question \#74232, Physics / Other

A train traveling at $7.55 \mathrm{~m} / \mathrm{s}$ accelerates to 975 m in 31.5 s . What is the final velocity?

Solution:

The kinematic equation that describes an object's motion is:

$$
d=v_{i} t+\frac{1}{2} a t^{2}
$$

The symbol d stands for the displacement of the object. The symbol a stands for the acceleration of the object. And the symbol v stands for the velocity of the object; a subscript of i after the v indicates that the velocity value is the initial velocity value and a subscript of f indicates that the velocity value is the final velocity value.

The acceleration is

$$
a=\frac{2\left(d-v_{i} t\right)}{t^{2}}=\frac{2 \times(975-7.55 \times 31.5)}{31.5^{2}}=1.49 \mathrm{~m} / \mathrm{s}^{2}
$$

The acceleration is also

$$
a=\frac{v_{f}-v_{i}}{t}
$$

Thus,

$$
v_{f}=v_{i}+a t=7.55+1.49 \times 31.5 \approx 54.5 \mathrm{~m} / \mathrm{s}
$$

Answer: $54.5 \mathrm{~m} / \mathrm{s}$
Answer provided by https://www.AssignmentExpert.com

