## Answer on Question \#74189, Physics / Mechanics - Relativity

Question a child of mass 50 kg is standing an the edge of merry go round of mass 250 kg and radius 3 m which is rotating with an angular velocity of $30 \mathrm{rad} / \mathrm{sec}$. what will be the final angular velocity of the merry go round when child reached the center ?

Solution We need to use conservation of angular momentum here. Initially we have sum of moments of child and marry-go-around but in the end moment of child becomes 0 . Hence:

$$
w_{1}\left(I_{c}+I_{d}\right)=w_{2} I_{d}
$$

Here we have: $w_{1}=30 \mathrm{rad} / \mathrm{s}$ - initial angular velocity, $I_{c}=m_{c} r_{d}^{2}$ is moment of inertia of a child and $I_{d}=m_{d} r_{d}^{2} / 2$ is moment of inertia of marry-go-around, which we assumed is a disk, $m_{c}=50 \mathrm{~kg}, m_{d}=250 \mathrm{~kg}, r_{d}=3 \mathrm{~m}$. So we find final angular velocity:

$$
w_{2}=w_{1} \frac{m_{d} r_{d}^{2} / 2}{m_{c} r_{d}^{2}+m_{d} r_{d}^{2} / 2}=30 \frac{1125}{450+1125} \approx 21.4 \mathrm{rad} / \mathrm{s}
$$

