Answer on Question \#74185-Physics-Electromagnetism

1.) Four equal magnitude point charges (3 uC) are placed at the corners of a square that is 4 cm on a side. Two diagonally opposite each other, are positive and the other two are negative. Determine the force on either negative charge.

Solution

$$
\begin{gathered}
F_{1}=F_{2}=\frac{k Q^{2}}{a^{2}}=\frac{\left(9 \cdot 10^{9}\right)\left(3 \cdot 10^{-6}\right)^{2}}{(0.04)^{2}}=(50.625) \mathrm{N} . \\
F_{3}=\frac{k Q^{2}}{(\sqrt{2} a)^{2}}=\frac{\left(9 \cdot 10^{9}\right)\left(3 \cdot 10^{-6}\right)^{2}}{(0.04 \sqrt{2})^{2}}=(25.3125) \mathrm{N} . \\
F_{x}=F_{y}=F_{1}-\frac{F_{3}}{\sqrt{2}}
\end{gathered}
$$

Therefore, the force on either negative charge

$$
F=\sqrt{2}\left(F_{1}-\frac{F_{3}}{\sqrt{2}}\right)=\sqrt{2} F_{1}-F_{3}=\sqrt{2}(50.625)-(25.3125)=46.3 \mathrm{~N} .
$$

2.) Charges of $+2,+3$, and -8 uC are placed at the vertices of an equilateral triangle of side 10 cm . Calculate the magnitude of the force acting on the -8 uC due to the other two charges

Solution

$$
\begin{aligned}
& F_{1}=\frac{k q_{1} Q}{a^{2}}=\frac{\left(9 \cdot 10^{9}\right)\left(2 \cdot 10^{-6}\right)\left(8 \cdot 10^{-6}\right)}{(0.1)^{2}}=(14.4) \mathrm{N} . \\
& F_{2}=\frac{k q_{2} Q}{a^{2}}=\frac{\left(9 \cdot 10^{9}\right)\left(3 \cdot 10^{-6}\right)\left(8 \cdot 10^{-6}\right)}{(0.1)^{2}}=(21.6) \mathrm{N} .
\end{aligned}
$$

The magnitude of the force acting on the -8 uC due to the other two charges is

$$
\begin{gathered}
F=\sqrt{F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \cos \alpha} \\
F=\sqrt{(14.4)^{2}+(21.6)^{2}+2(14.4)(21.6) \cos 60}=31.4 \mathrm{~N} .
\end{gathered}
$$

Answer provided by https://www.AssignmentExpert.com

